Numerical Analysis for Statisticians

This book, like many books, was born in frustration. When in the fall of 1994 I set out to teach a second course in computational statistics to d- toral students at the University of Michigan, none of the existing texts seemed exactly right. On the one hand, the many decent, even inspiring, books on...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lange, Kenneth (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Statistics and Computing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03746nam a22004575i 4500
001 978-0-387-22724-5
003 DE-He213
005 20151204145114.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387227245  |9 978-0-387-22724-5 
024 7 |a 10.1007/b98850  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Lange, Kenneth.  |e author. 
245 1 0 |a Numerical Analysis for Statisticians  |h [electronic resource] /  |c by Kenneth Lange. 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XV, 356 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics and Computing,  |x 1431-8784 
505 0 |a Recurrence Relations -- Power Series Expansions -- Continued Fraction Expansions -- Asymptotic Expansions -- Solution of Nonlinear Equations -- Vector and Matrix Norms -- Linear Regression and Matrix Inversion -- Eigenvalues and Eigenvectors -- Splines -- The EM Algorithm -- Newton’s Method and Scoring -- Variations on the EM Theme -- Convergence of Optimization Algorithms -- Constrained Optimization -- Concrete Hilbert Spaces -- Quadrature Methods -- The Fourier Transform -- The Finite Fourier Transform -- Wavelets -- Generating Random Deviates -- Independent Monte Carlo -- Bootstrap Calculations -- Finite-State Markov Chains -- Markov Chain Monte Carlo. 
520 |a This book, like many books, was born in frustration. When in the fall of 1994 I set out to teach a second course in computational statistics to d- toral students at the University of Michigan, none of the existing texts seemed exactly right. On the one hand, the many decent, even inspiring, books on elementary computational statistics stress the nuts and bolts of using packaged programs and emphasize model interpretation more than numerical analysis. On the other hand, the many theoretical texts in - merical analysis almost entirely neglect the issues of most importance to statisticians. TheclosestbooktomyidealwastheclassicaltextofKennedy and Gentle [2]. More than a decade and a half after its publication, this book still has many valuable lessons to teach statisticians. However, upon re?ecting on the rapid evolution of computational statistics, I decided that the time was ripe for an update. The book you see before you represents a biased selection of those topics in theoretical numerical analysis most relevant to statistics. By intent this book is not a compendium of tried and trusted algorithms, is not a c- sumer’s guide to existing statistical software, and is not an exposition of computer graphics or exploratory data analysis. My focus on principles of numerical analysis is intended to equip students to craft their own software and to understand the advantages and disadvantages of di?erent numerical methods. Issues of numerical stability, accurate approximation, compu- tional complexity, and mathematical modeling share the limelight and take precedence over philosophical questions of statistical inference. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387949796 
830 0 |a Statistics and Computing,  |x 1431-8784 
856 4 0 |u http://dx.doi.org/10.1007/b98850  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)