Riemannian Manifolds An Introduction to Curvature /

This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introd...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lee, John M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 1997.
Σειρά:Graduate Texts in Mathematics, 176
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03366nam a22004455i 4500
001 978-0-387-22726-9
003 DE-He213
005 20160707021324.0
007 cr nn 008mamaa
008 121227s1997 xxu| s |||| 0|eng d
020 |a 9780387227269  |9 978-0-387-22726-9 
024 7 |a 10.1007/b98852  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Lee, John M.  |e author. 
245 1 0 |a Riemannian Manifolds  |h [electronic resource] :  |b An Introduction to Curvature /  |c by John M. Lee. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 1997. 
300 |a XV, 226 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 176 
505 0 |a What Is Curvature? -- Review of Tensors, Manifolds, and Vector Bundles -- Definitions and Examples of Riemannian Metrics -- Connections -- Riemannian Geodesics -- Geodesics and Distance -- Curvature -- Riemannian Submanifolds -- The Gauss-Bonnet Theorem -- Jacobi Fields -- Curvature and Topology. 
520 |a This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds. The author has selected a set of topics that can reasonably be covered in ten to fifteen weeks, instead of making any attempt to provide an encyclopedic treatment of the subject. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics,without which one cannot claim to be doing Riemannian geometry. It then introduces the Riemann curvature tensor, and quickly moves on to submanifold theory in order to give the curvature tensor a concrete quantitative interpretation. From then on, all efforts are bent toward proving the four most fundamental theorems relating curvature and topology: the Gauss–Bonnet theorem (expressing the total curvature of a surface in term so fits topological type), the Cartan–Hadamard theorem (restricting the topology of manifolds of nonpositive curvature), Bonnet’s theorem (giving analogous restrictions on manifolds of strictly positive curvature), and a special case of the Cartan–Ambrose–Hicks theorem (characterizing manifolds of constant curvature). Many other results and techniques might reasonably claim a place in an introductory Riemannian geometry course, but could not be included due to time constraints. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387983226 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 176 
856 4 0 |u http://dx.doi.org/10.1007/b98852  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)