Elements of Large-Sample Theory

Elements of Large-Sample Theory provides a unified treatment of first- order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology. The book is written at an elementary level and is suit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lehmann, E. L. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02543nam a22004335i 4500
001 978-0-387-22729-0
003 DE-He213
005 20151204190439.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387227290  |9 978-0-387-22729-0 
024 7 |a 10.1007/b98855  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Elements of Large-Sample Theory  |h [electronic resource] /  |c edited by E. L. Lehmann. 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XII, 632 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Mathematical Background -- Convergence in Probability and in Law -- Performance of Statistical Tests -- Estimation -- Multivariate Extensions -- Nonparametric Estimation -- Efficient Estimators and Tests. 
520 |a Elements of Large-Sample Theory provides a unified treatment of first- order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology. The book is written at an elementary level and is suitable for students at the master's level in statistics and in aplied fields who have a background of two years of calculus. E.L. Lehmann is Professor of Statistics Emeritus at the University of California, Berkeley. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands, and the University of Chicago. Also available: Lehmann/Casella, Theory at Point Estimation, 2nd ed. Springer-Verlag New York, Inc., 1998, ISBN 0- 387-98502-6 Lehmann, Testing Statistical Hypotheses, 2nd ed. Springer-Verlag New York, Inc., 1997, ISBN 0-387-94919-4. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Lehmann, E. L.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387985954 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/b98855  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)