Local Regression and Likelihood

Separation of signal from noise is the most fundamental problem in data analysis, and arises in many fields, for example, signal processing, econometrics, acturial science, and geostatistics. This book introduces the local regression method in univariate and multivariate settings, and extensions to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Loader, Clive (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Statistics and Computing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:Separation of signal from noise is the most fundamental problem in data analysis, and arises in many fields, for example, signal processing, econometrics, acturial science, and geostatistics. This book introduces the local regression method in univariate and multivariate settings, and extensions to local likelihood and density estimation. Basic theoretical results and diagnostic tools such as cross validation are introduced along the way. Examples illustrate the implementation of the methods using the LOCFIT software.
Φυσική περιγραφή:XIV, 290 p. online resource.
ISBN:9780387227320
ISSN:1431-8784