From Computer to Brain Foundations of Computational Neuroscience /

Biology undergraduates, medical students and life-science graduate students often have limited mathematical skills. Similarly, physics, math and engineering students have little patience for the detailed facts that make up much of biological knowledge. Teaching computational neuroscience as an integ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lytton, William W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2002.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02982nam a22005535i 4500
001 978-0-387-22733-7
003 DE-He213
005 20151204151726.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780387227337  |9 978-0-387-22733-7 
024 7 |a 10.1007/b98859  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Lytton, William W.  |e author. 
245 1 0 |a From Computer to Brain  |h [electronic resource] :  |b Foundations of Computational Neuroscience /  |c by William W. Lytton. 
264 1 |a New York, NY :  |b Springer New York,  |c 2002. 
300 |a XX, 364 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Perspectives -- Computational Neuroscience and You -- Basic Neuroscience -- Computers -- Computer Representations -- The Soul of an Old Machine -- Cybernetics -- Concept Neurons -- Neural Coding -- Our Friend the Limulus -- Supervised Learning: Delta Rule and Back-Propagation -- Associative Memory Networks -- Brains -- From Soap to Volts -- Hodgkin-Huxley Model -- Compartment Modeling -- From Artificial Neural Network to Realistic Neural Network -- Neural Circuits -- The Basics. 
520 |a Biology undergraduates, medical students and life-science graduate students often have limited mathematical skills. Similarly, physics, math and engineering students have little patience for the detailed facts that make up much of biological knowledge. Teaching computational neuroscience as an integrated discipline requires that both groups be brought forward onto common ground. This book does this by making ancillary material available in an appendix and providing basic explanations without becoming bogged down in unnecessary details. The book will be suitable for undergraduates and beginning graduate students taking a computational neuroscience course and also to anyone with an interest in the uses of the computer in modeling the nervous system. 
650 0 |a Mathematics. 
650 0 |a Neurosciences. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Neurobiology. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Biomedical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Neurosciences. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Neurobiology. 
650 2 4 |a Biomedical Engineering. 
650 2 4 |a Computing Methodologies. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387955285 
856 4 0 |u http://dx.doi.org/10.1007/b98859  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)