Model Theory An Introduction /

This book is a modern introduction to model theory which stresses applications to algebra throughout the text. The first half of the book includes classical material on model construction techniques, type spaces, prime models, saturated models, countable models, and indiscernibles and their applicat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Marker, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2002.
Σειρά:Graduate Texts in Mathematics, 217
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02755nam a22004575i 4500
001 978-0-387-22734-4
003 DE-He213
005 20151204181801.0
007 cr nn 008mamaa
008 100301s2002 xxu| s |||| 0|eng d
020 |a 9780387227344  |9 978-0-387-22734-4 
024 7 |a 10.1007/b98860  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Marker, David.  |e author. 
245 1 0 |a Model Theory  |h [electronic resource] :  |b An Introduction /  |c by David Marker. 
264 1 |a New York, NY :  |b Springer New York,  |c 2002. 
300 |a VIII, 345 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 217 
505 0 |a Structures and Theories -- Basic Techniques -- Algebraic Examples -- Realizing and Omitting Types -- Indiscernibles -- ?-Stable Theories -- ?-Stable Groups -- Geometry of Strongly Minimal Sets. 
520 |a This book is a modern introduction to model theory which stresses applications to algebra throughout the text. The first half of the book includes classical material on model construction techniques, type spaces, prime models, saturated models, countable models, and indiscernibles and their applications. The author also includes an introduction to stability theory beginning with Morley's Categoricity Theorem and concentrating on omega-stable theories. One significant aspect of this text is the inclusion of chapters on important topics not covered in other introductory texts, such as omega-stable groups and the geometry of strongly minimal sets. The author then goes on to illustrate how these ingredients are used in Hrushovski's applications to diophantine geometry. David Marker is Professor of Mathematics at the University of Illinois at Chicago. His main area of research involves mathematical logic and model theory, and their applications to algebra and geometry. This book was developed from a series of lectures given by the author at the Mathematical Sciences Research Institute in 1998. 
650 0 |a Mathematics. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387987606 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 217 
856 4 0 |u http://dx.doi.org/10.1007/b98860  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)