Moduli of Curves

Aims Theaimofthisbookistoprovideaguidetoarichandfascinatings- ject: algebraic curves, and how they vary in families. The revolution that the ?eld of algebraic geometry has undergone with the introd- tion of schemes, together with new ideas, techniques and viewpoints introduced by Mumford and others,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Harris, Joe (Συγγραφέας), Morrison, Ian (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1998.
Σειρά:Graduate Texts in Mathematics, 187
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02971nam a22004575i 4500
001 978-0-387-22737-5
003 DE-He213
005 20151204184648.0
007 cr nn 008mamaa
008 100301s1998 xxu| s |||| 0|eng d
020 |a 9780387227375  |9 978-0-387-22737-5 
024 7 |a 10.1007/b98867  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Harris, Joe.  |e author. 
245 1 0 |a Moduli of Curves  |h [electronic resource] /  |c by Joe Harris, Ian Morrison. 
264 1 |a New York, NY :  |b Springer New York,  |c 1998. 
300 |a XIII, 369 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 187 
505 0 |a Parameter spaces: Constructions and examples -- Basic facts about moduli spaces of curves -- Techniques -- Construction of $$ \overline M _g $$ -- Limit Linear Series and Brill-Noether theory -- Geometry of moduli spaces: Selected results. 
520 |a Aims Theaimofthisbookistoprovideaguidetoarichandfascinatings- ject: algebraic curves, and how they vary in families. The revolution that the ?eld of algebraic geometry has undergone with the introd- tion of schemes, together with new ideas, techniques and viewpoints introduced by Mumford and others, have made it possible for us to understandthebehaviorofcurvesinwaysthatsimplywerenotpos- ble a half-century ago. This in turn has led, over the last few decades, to a burst of activity in the area, resolving long-standing problems and generating new and unforeseen results and questions. We hope to acquaint you both with these results and with the ideas that have made them possible. The book isn’t intended to be a de?nitive reference: the subject is developing too rapidly for that to be a feasible goal, even if we had the expertise necessary for the task. Our preference has been to - cus on examples and applications rather than on foundations. When discussing techniques we’ve chosen to sacri?ce proofs of some, even basic,results—particularlywherewecanprovideagoodreference— inordertoshowhowthemethodsareusedtostudymoduliofcurves. Likewise, we often prove results in special cases which we feel bring out the important ideas with a minimum of technical complication. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Morrison, Ian.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387984384 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 187 
856 4 0 |u http://dx.doi.org/10.1007/b98867  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)