Numerical Optimization

This is a book for people interested in solving optimization problems. Because of the wide (and growing) use of optimization in science, engineering, economics, and industry, it is essential for students and practitioners alike to develop an understanding of optimization algorithms. Knowledge of the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Nocedal, Jorge (Επιμελητής έκδοσης), Wright, Stephen J. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Springer Series in Operations Research and Financial Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03558nam a22005655i 4500
001 978-0-387-22742-9
003 DE-He213
005 20151204162624.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387227429  |9 978-0-387-22742-9 
024 7 |a 10.1007/b98874  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
245 1 0 |a Numerical Optimization  |h [electronic resource] /  |c edited by Jorge Nocedal, Stephen J. Wright. 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XXI, 636 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
505 0 |a Fundamentals of Unconstrained Optimization -- Line Search Methods -- Trust-Region Methods -- Conjugate Gradient Methods -- Practical Newton Methods -- Calculating Derivatives -- Quasi-Newton Methods -- Large-Scale Quasi-Newton and Partially Separable Optimization -- Nonlinear Least-Squares Problems -- Nonlinear Equations -- Theory of Constrained Optimization -- Linear Programming: The Simplex Method -- Linear Programming: Interior-Point Methods -- Fundamentals of Algorithms for Nonlinear Constrained Optimization -- Quadratic Programming -- Penalty, Barrier, and Augmented Lagrangian Methods -- Sequential Quadratic Programming. 
520 |a This is a book for people interested in solving optimization problems. Because of the wide (and growing) use of optimization in science, engineering, economics, and industry, it is essential for students and practitioners alike to develop an understanding of optimization algorithms. Knowledge of the capabilities and limitations of these algorithms leads to a better understanding of their impact on various applications, and points the way to future research on improving and extending optimization algorithms and software. Our goal in this book is to give a comprehensive description of the most powerful, state-of-the-art, techniques for solving continuous optimization problems. By presenting the motivating ideas for each algorithm, we try to stimulate the reader’s intuition and make the technical details easier to follow. Formal mathematical requirements are kept to a minimum. Because of our focus on continuous problems, we have omitted discussion of important optimization topics such as discrete and stochastic optimization. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a System theory. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Operation Research/Decision Theory. 
700 1 |a Nocedal, Jorge.  |e editor. 
700 1 |a Wright, Stephen J.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387987934 
830 0 |a Springer Series in Operations Research and Financial Engineering,  |x 1431-8598 
856 4 0 |u http://dx.doi.org/10.1007/b98874  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)