Mass Transportation Problems Volume II: Applications /

This is the first comprehensive account of the theory of mass transportation problems and its applications. In volume I, the authors systematically develop the theory of mass transportation with emphasis to the Monge-Kantorovich mass transportation and the Kantorovich-Rubinstein mass transshipment p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rachev, Svetlozar T. (Συγγραφέας), Rüschendorf, Ludger (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1998.
Σειρά:Probability and its Applications, A Series of the Applied Probability Trust,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03277nam a22004695i 4500
001 978-0-387-22756-6
003 DE-He213
005 20151204173926.0
007 cr nn 008mamaa
008 100301s1998 xxu| s |||| 0|eng d
020 |a 9780387227566  |9 978-0-387-22756-6 
024 7 |a 10.1007/b98894  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Rachev, Svetlozar T.  |e author. 
245 1 0 |a Mass Transportation Problems  |h [electronic resource] :  |b Volume II: Applications /  |c by Svetlozar T. Rachev, Ludger Rüschendorf. 
264 1 |a New York, NY :  |b Springer New York,  |c 1998. 
300 |a XXVI, 430 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and its Applications, A Series of the Applied Probability Trust,  |x 1431-7028 
505 0 |a Modifications of the Monge-Kantorovich Problems: Transportation Problems with Relaxed or Additional Constraints -- Application of Kantorovich-Type Metrics to Various Probabilistic-Type Limit Theorems -- Mass Transportation Problems and Recursive Stochastic Equations -- Stochastic Differential Equations and Empirical Measures. 
520 |a This is the first comprehensive account of the theory of mass transportation problems and its applications. In volume I, the authors systematically develop the theory of mass transportation with emphasis to the Monge-Kantorovich mass transportation and the Kantorovich-Rubinstein mass transshipment problems, and their various extensions. They discuss a variety of different approaches towards solutions of these problems and exploit the rich interrelations to several mathematical sciences--from functional analysis to probability theory and mathematical economics. The second volume is devoted to applications to the mass transportation and mass transshipment problems to topics in applied probability, theory of moments and distributions with given marginals, queucing theory, risk theory of probability metrics and its applications to various fields, amoung them general limit theorems for Gaussian and non-Gaussian limiting laws, stochastic differential equations, stochastic algorithms and rounding problems. The book will be useful to graduate students and researchers in the fields of theoretical and applied probabilitry, operations research, computer science, and mathematical economics. The prerequisites for this book are graduate level probability theory and real and functional analysis. 
650 0 |a Statistics. 
650 0 |a Probabilities. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics, general. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Rüschendorf, Ludger.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387983523 
830 0 |a Probability and its Applications, A Series of the Applied Probability Trust,  |x 1431-7028 
856 4 0 |u http://dx.doi.org/10.1007/b98894  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)