The Laplace Transform Theory and Applications /

The Laplace transform is a wonderful tool for solving ordinary and partial differential equations and has enjoyed much success in this realm. With its success, however, a certain casualness has been bred concerning its application, without much regard for hypotheses and when they are valid. Even pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schiff, Joel L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 1999.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03195nam a22004575i 4500
001 978-0-387-22757-3
003 DE-He213
005 20151116134428.0
007 cr nn 008mamaa
008 130501s1999 xxu| s |||| 0|eng d
020 |a 9780387227573  |9 978-0-387-22757-3 
024 7 |a 10.1007/978-0-387-22757-3  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Schiff, Joel L.  |e author. 
245 1 4 |a The Laplace Transform  |h [electronic resource] :  |b Theory and Applications /  |c by Joel L. Schiff. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 1999. 
300 |a XIV, 236 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a 1 Basic Principles -- 2 Applications and Properties -- 3 Complex Variable Theory -- 4 Complex Inversion Formula -- 5 Partial Differential Equations -- References -- Tables -- Laplace Transform Operations -- Table of Laplace Transforms -- Answers to Exercises. 
520 |a The Laplace transform is a wonderful tool for solving ordinary and partial differential equations and has enjoyed much success in this realm. With its success, however, a certain casualness has been bred concerning its application, without much regard for hypotheses and when they are valid. Even proofs of theorems often lack rigor, and dubious mathematical practices are not uncommon in the literature for students. In the present text, I have tried to bring to the subject a certain amount of mathematical correctness and make it accessible to un­ dergraduates. Th this end, this text addresses a number of issues that are rarely considered. For instance, when we apply the Laplace trans­ form method to a linear ordinary differential equation with constant coefficients, any(n) + an-lY(n-l) + · · · + aoy = f(t), why is it justified to take the Laplace transform of both sides of the equation (Theorem A. 6)? Or, in many proofs it is required to take the limit inside an integral. This is always fraught with danger, especially with an improper integral, and not always justified. I have given complete details (sometimes in the Appendix) whenever this procedure is required. IX X Preface Furthermore, it is sometimes desirable to take the Laplace trans­ form of an infinite series term by term. Again it is shown that this cannot always be done, and specific sufficient conditions are established to justify this operation. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781475772623 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-22757-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)