Mathematical Statistics

This book is intended for a course entitled Mathematical Statistics o?ered at the Department of Statistics, University of Wisconsin-Madison. This course, taught in a mathematically rigorous fashion, covers essential - terials in statistical theory that a ?rst or second year graduate student typicall...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shao, Jun (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03032nam a22004335i 4500
001 978-0-387-22759-7
003 DE-He213
005 20151204144341.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387227597  |9 978-0-387-22759-7 
024 7 |a 10.1007/b98900  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Shao, Jun.  |e author. 
245 1 0 |a Mathematical Statistics  |h [electronic resource] /  |c by Jun Shao. 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XIV, 530 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Probability Theory -- Fundamentals of Statistics -- Unbiased Estimation -- Estimation in Parametric Models -- Estimation in Nonparametric Models -- Hypothesis Tests -- Confidence Sets. 
520 |a This book is intended for a course entitled Mathematical Statistics o?ered at the Department of Statistics, University of Wisconsin-Madison. This course, taught in a mathematically rigorous fashion, covers essential - terials in statistical theory that a ?rst or second year graduate student typically needs to learn as preparation for work on a Ph. D. degree in stat- tics. The course is designed for two 15-week semesters, with three lecture hours and two discussion hours in each week. Students in this course are assumed to have a good knowledge of advanced calculus. A course in real analysis or measure theory prior to this course is often recommended. Chapter 1 provides a quick overview of important concepts and results in measure-theoretic probability theory that are used as tools in the rest of the book. Chapter 2 introduces some fundamental concepts in statistics, including statistical models, the principle of su?ciency in data reduction, and two statistical approaches adopted throughout the book: statistical decision theory and statistical inference. Each of Chapters 3 through 7 provides a detailed study of an important topic in statistical decision t- ory and inference; Chapter 3 introduces the theory of unbiased estimation; Chapter 4 studies theory and methods in point estimation under param- ric models; Chapter 5 covers point estimation in nonparametric settings; Chapter 6 focuses on hypothesis testing; and Chapter 7 discusses int- val estimation and con?dence sets. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387986746 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/b98900  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)