Statistical Inference in Science

The aim of this book is to develop an understanding and treatment of the problems of inference associated with experiments in science. Many textbooks treat inference as principally the reduction of the sample information to estimates and their marginal distribution and supposedly optimal properties....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sprott, D. A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2000.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03297nam a22004335i 4500
001 978-0-387-22766-5
003 DE-He213
005 20151204181323.0
007 cr nn 008mamaa
008 100301s2000 xxu| s |||| 0|eng d
020 |a 9780387227665  |9 978-0-387-22766-5 
024 7 |a 10.1007/b98955  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Sprott, D. A.  |e author. 
245 1 0 |a Statistical Inference in Science  |h [electronic resource] /  |c by D. A. Sprott. 
264 1 |a New York, NY :  |b Springer New York,  |c 2000. 
300 |a XVI, 248 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a The Likelihood Function -- Division of Sample Information I: Likelihood ?, Model f -- Division of Sample Information II: Likelihood Structure -- Estimation Statements -- Tests of Significance -- The Location-Scale Pivotal Model -- The Gauss Linear Model -- Maximum Likelihood Estimation -- Controlled Experiments -- Problems. 
520 |a The aim of this book is to develop an understanding and treatment of the problems of inference associated with experiments in science. Many textbooks treat inference as principally the reduction of the sample information to estimates and their marginal distribution and supposedly optimal properties. In contrast, this book emphasizes techniques for dividing the sample information into various parts addressing the diverse problems of inference that arise from repeatable experiments. An unusually valuable feature of the book is the large number of practical examples, many of which use data taken from experiments published in various scientific journals. This book has evolved from the author's courses on statistical inference. It would be a suitable text book for advanced undergraduate, Masters, and Ph.D. statistics students. It can also be used as a reference book. A background knowledge of an introductory course in probability is assumed, including the calculation and manipulation of probability functions and density functions, transformation of variables and the use of Jacobians. The author is a Distinguished Professor Emeritus of Statistics, University of Waterloo, and Professor of Statistics, Centro de Investigaci=F3n en Matemáticas, Guanajuato, Mexico. He is an Honorary member of the Statistical Society of Canada and a recipient of the Society's Gold Medal for Research. He is also an elected member of the International Statistical Institute and a Fellow of the American Statistical Association, of the Institute of Mathematical Statistics, and of the Royal Society of Canada. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387950198 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/b98955  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)