Determinants and Their Applications in Mathematical Physics

The last treatise on the theory of determinants, by T. Muir, revised and enlarged by W. H. Metzler, was published by Dover Publications Inc. in 1960. It is an unabridged and corrected republication of the edition ori- nally published by Longman, Green and Co. in 1933 and contains a preface by Metzle...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Vein, Robert (Συγγραφέας), Dale, Paul (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1999.
Σειρά:Applied Mathematical Sciences, 134
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03167nam a22004935i 4500
001 978-0-387-22774-0
003 DE-He213
005 20151204154248.0
007 cr nn 008mamaa
008 100301s1999 xxu| s |||| 0|eng d
020 |a 9780387227740  |9 978-0-387-22774-0 
024 7 |a 10.1007/b98968  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Vein, Robert.  |e author. 
245 1 0 |a Determinants and Their Applications in Mathematical Physics  |h [electronic resource] /  |c by Robert Vein, Paul Dale. 
264 1 |a New York, NY :  |b Springer New York,  |c 1999. 
300 |a XIV, 376 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 134 
505 0 |a Determinants, First Minors, and Cofactors -- A Summary of Basic Determinant Theory -- Intermediate Determinant Theory -- Particular Determinants -- Further Determinant Theory -- Applications of Determinants in Mathematical Physics. 
520 |a The last treatise on the theory of determinants, by T. Muir, revised and enlarged by W. H. Metzler, was published by Dover Publications Inc. in 1960. It is an unabridged and corrected republication of the edition ori- nally published by Longman, Green and Co. in 1933 and contains a preface by Metzler dated 1928. The Table of Contents of this treatise is given in Appendix 13. A small number of other books devoted entirely to determinants have been published in English, but they contain little if anything of importance that was not known to Muir and Metzler. A few have appeared in German and Japanese. In contrast, the shelves of every mathematics library groan under the weight of books on linear algebra, some of which contain short chapters on determinants but usually only on those aspects of the subject which are applicable to the chapters on matrices. There appears to be tacit agreement among authorities on linear algebra that determinant theory is important only as a branch of matrix theory. In sections devoted entirely to the establishment of a determinantal relation, many authors de?ne a determinant by ?rst de?ning a matrixM and then adding the words: “Let detM be the determinant of the matrix M” as though determinants have no separate existence. This belief has no basis in history. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Dale, Paul.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387985589 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 134 
856 4 0 |u http://dx.doi.org/10.1007/b98968  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)