Bayesian Forecasting and Dynamic Models

This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analy...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: West, Mike (Συγγραφέας), Harrison, Jeff (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1997.
Έκδοση:Second Edition.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03442nam a22005175i 4500
001 978-0-387-22777-1
003 DE-He213
005 20151204142428.0
007 cr nn 008mamaa
008 100301s1997 xxu| s |||| 0|eng d
020 |a 9780387227771  |9 978-0-387-22777-1 
024 7 |a 10.1007/b98971  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a West, Mike.  |e author. 
245 1 0 |a Bayesian Forecasting and Dynamic Models  |h [electronic resource] /  |c by Mike West, Jeff Harrison. 
250 |a Second Edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 1997. 
300 |a XIV, 682 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a to the DLM: The First-Order Polynomial Model -- to the DLM: The Dynamic Regression Model -- The Dynamic Linear Model -- Univariate Time Series DLM Theory -- Model Specification and Design -- Polynomial Trend Models -- Seasonal Models -- Regression, Autoregression, and Related Models -- Illustrations and Extensions of Standard DLMs -- Intervention and Monitoring -- Multi-Process Models -- Non-Linear Dynamic Models: Analytic and Numerical Approximations -- Exponential Family Dynamic Models -- Simulation-Based Methods in Dynamic Models -- Multivariate Modelling and Forecasting -- Distribution Theory and Linear Algebra. 
520 |a This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti?c, and socio-economic ?elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Economic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods. 
700 1 |a Harrison, Jeff.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387947259 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/b98971  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)