Weyl Transforms

This book is an outgrowth of courses given by me for graduate students at York University in the past ten years. The actual writing of the book in this form was carried out at York University, Peking University, the Academia Sinica in Beijing, the University of California at Irvine, Osaka University...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wong, M. W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 1998.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03633nam a22004935i 4500
001 978-0-387-22778-8
003 DE-He213
005 20151125021254.0
007 cr nn 008mamaa
008 100301s1998 xxu| s |||| 0|eng d
020 |a 9780387227788  |9 978-0-387-22778-8 
024 7 |a 10.1007/b98973  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Wong, M. W.  |e author. 
245 1 0 |a Weyl Transforms  |h [electronic resource] /  |c by M. W. Wong. 
264 1 |a New York, NY :  |b Springer New York,  |c 1998. 
300 |a VIII, 160 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Prerequisite Topics in Fourier Analysis -- The Fourier-Wigner Transform -- The Wigner Transform -- The Weyl Transform -- Hilbert-Schmidt Operators on L2(?n) -- The Tensor Product in L2(?n) -- H*-Algebras and the Weyl Calculus -- The Heisenberg Group -- The Twisted Convolution -- The Riesz-Thorin Theorem -- Weyl Transforms with Symbols in Lr(?2n), 1 ? r ? 2 -- Weyl Transforms with Symbols in L?(?2n) -- Weyl Transforms with Symbols in Lr(?2n), 2 r < ? -- Compact Weyl Transforms -- Localization Operators -- A Fourier Transform -- Compact Localization Operators -- Hermite Polynomials -- Hermite Functions -- Laguerre Polynomials -- Hermite Functions on ? -- Vector Fields on ? -- Laguerre Formulas for Hermite Functions on ? -- Weyl Transforms on L2(?) with Radial Symbols -- Another Fourier Transform -- A Class of Compact Weyl Transforms on L2(?) -- A Class of Bounded Weyl Transforms on L2(?) -- A Weyl Transform with Symbol in S’(?2) -- The Symplectic Group -- Symplectic Invariance of Weyl Transforms. 
520 |a This book is an outgrowth of courses given by me for graduate students at York University in the past ten years. The actual writing of the book in this form was carried out at York University, Peking University, the Academia Sinica in Beijing, the University of California at Irvine, Osaka University, and the University of Delaware. The idea of writing this book was ?rst conceived in the summer of 1989, and the protracted period of gestation was due to my daily duties as a professor at York University. I would like to thank Professor K. C. Chang, of Peking University; Professor Shujie Li, of the Academia Sinica in Beijing; Professor Martin Schechter, of the University of California at Irvine; Professor Michihiro Nagase, of Osaka University; and Professor M. Z. Nashed, of the University of Delaware, for providing me with stimulating environments for the exchange of ideas and the actual writing of the book. We study in this book the properties of pseudo-differential operators arising in quantum mechanics, ?rst envisaged in [33] by Hermann Weyl, as bounded linear 2 n operators on L (R ). Thus, it is natural to call the operators treated in this book Weyl transforms. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387984148 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/b98973  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)