Mining Sequential Patterns from Large Data Sets

The focus of Mining Sequential Patterns from Large Data Sets is on sequential pattern mining. In many applications, such as bioinformatics, web access traces, system utilization logs, etc., the data is naturally in the form of sequences. This information has been of great interest for analyzing the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wang, Wei (Συγγραφέας), Yang, Jiong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2005.
Σειρά:Advances in Database Systems, 28
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03301nam a22005775i 4500
001 978-0-387-24247-7
003 DE-He213
005 20151029221332.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387242477  |9 978-0-387-24247-7 
024 7 |a 10.1007/b104937  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Wang, Wei.  |e author. 
245 1 0 |a Mining Sequential Patterns from Large Data Sets  |h [electronic resource] /  |c by Wei Wang, Jiong Yang. 
264 1 |a Boston, MA :  |b Springer US,  |c 2005. 
300 |a XV, 163 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Database Systems,  |x 1386-2944 ;  |v 28 
505 0 |a Related Work -- Periodic Patterns -- Statistically Significant Patterns -- Approximate Patterns -- Conclusion Remark. 
520 |a The focus of Mining Sequential Patterns from Large Data Sets is on sequential pattern mining. In many applications, such as bioinformatics, web access traces, system utilization logs, etc., the data is naturally in the form of sequences. This information has been of great interest for analyzing the sequential data to find its inherent characteristics. Examples of sequential patterns include but are not limited to protein sequence motifs and web page navigation traces. To meet the different needs of various applications, several models of sequential patterns have been proposed. This volume not only studies the mathematical definitions and application domains of these models, but also the algorithms on how to effectively and efficiently find these patterns. Mining Sequential Patterns from Large Data Sets provides a set of tools for analyzing and understanding the nature of various sequences by identifying the specific model(s) of sequential patterns that are most suitable. This book provides an efficient algorithm for mining these patterns. Mining Sequential Patterns from Large Data Sets is designed for a professional audience of researchers and practitioners in industry and also suitable for graduate-level students in computer science. . 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Data structures (Computer science). 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Multimedia information systems. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Data Structures. 
650 2 4 |a Multimedia Information Systems. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Yang, Jiong.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387242460 
830 0 |a Advances in Database Systems,  |x 1386-2944 ;  |v 28 
856 4 0 |u http://dx.doi.org/10.1007/b104937  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)