The Construction of New Mathematical Knowledge in Classroom Interaction An Epistemological Perspective /

The Construction of New Mathematical Knowledge in Classroom Interaction deals with the very specific characteristics of mathematical communication in the classroom. The general research question of this book is: How can everyday mathematics teaching be described, understood and developed as a teachi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Steinbring, Heinz (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2005.
Σειρά:Mathematics Education Library ; 38
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03549nam a22004695i 4500
001 978-0-387-24253-8
003 DE-He213
005 20151120183526.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387242538  |9 978-0-387-24253-8 
024 7 |a 10.1007/b104944  |2 doi 
040 |d GrThAP 
050 4 |a LC8-6691 
072 7 |a JNU  |2 bicssc 
072 7 |a PB  |2 bicssc 
072 7 |a EDU029010  |2 bisacsh 
082 0 4 |a 370  |2 23 
100 1 |a Steinbring, Heinz.  |e author. 
245 1 4 |a The Construction of New Mathematical Knowledge in Classroom Interaction  |h [electronic resource] :  |b An Epistemological Perspective /  |c by Heinz Steinbring. 
264 1 |a Boston, MA :  |b Springer US,  |c 2005. 
300 |a XIV, 236 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics Education Library ;  |v 38 
505 0 |a General Overview Of The Book -- Overview of the First Chapter -- Theoretical Background and Starting Point -- Overview of the Second Chapter -- The Theoretical Research Question -- Overview of the Third Chapter -- Overview of the Fourth Chapter -- Epistemology-Oriented Analyses of Mathematical Interactions -- Epistemological and Communicational Conditions of Interactive Mathematical Knowledge Constructions. 
520 |a The Construction of New Mathematical Knowledge in Classroom Interaction deals with the very specific characteristics of mathematical communication in the classroom. The general research question of this book is: How can everyday mathematics teaching be described, understood and developed as a teaching and learning environment in which the students gain mathematical insights and increasing mathematical competence by means of the teacher’s initiatives, offers and challenges? How can the ‘quality’ of mathematics teaching be realized and appropriately described? And the following more specific research question is investigated: How is new mathematical knowledge interactively constructed in a typical instructional communication among students together with the teacher? In order to answer this question, an attempt is made to enter as in-depth as possible under the surface of the visible phenomena of the observable everyday teaching events. In order to do so, theoretical views about mathematical knowledge and communication are elaborated. The careful qualitative analyses of several episodes of mathematics teaching in primary school is based on an epistemologically oriented analysis Steinbring has developed over the last years and applied to mathematics teaching of different grades. The book offers a coherent presentation and a meticulous application of this fundamental research method in mathematics education that establishes a reciprocal relationship between everyday classroom communication and epistemological conditions of mathematical knowledge constructed in interaction. 
650 0 |a Education. 
650 0 |a Epistemology. 
650 0 |a Mathematics  |x Study and teaching. 
650 1 4 |a Education. 
650 2 4 |a Mathematics Education. 
650 2 4 |a Epistemology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387242514 
830 0 |a Mathematics Education Library ;  |v 38 
856 4 0 |u http://dx.doi.org/10.1007/b104944  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)