Practical Mathematical Optimization An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms /

This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form without neglecting rigour. The work should enable the professional to apply optimization theory and algorithms to his own particular practical field of interest, be...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Snyman, Jan A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2005.
Σειρά:Applied Optimization, 97
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03075nam a22005175i 4500
001 978-0-387-24349-8
003 DE-He213
005 20151204162238.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387243498  |9 978-0-387-24349-8 
024 7 |a 10.1007/b105200  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Snyman, Jan A.  |e author. 
245 1 0 |a Practical Mathematical Optimization  |h [electronic resource] :  |b An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms /  |c by Jan A. Snyman. 
264 1 |a Boston, MA :  |b Springer US,  |c 2005. 
300 |a XX, 258 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Optimization,  |x 1384-6485 ;  |v 97 
505 0 |a Line Search Descent Methods for Unconstrained Minimization -- Standard Methods for Constrained Optimization -- New Gradient-Based Trajectory and Approximation Methods -- Example Problems -- Some Theorems. 
520 |a This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form without neglecting rigour. The work should enable the professional to apply optimization theory and algorithms to his own particular practical field of interest, be it engineering, physics, chemistry, or business economics. Most importantly, for the first time in a relatively brief and introductory work, due attention is paid to the difficulties—such as noise, discontinuities, expense of function evaluations, and the existence of multiple minima—that often unnecessarily inhibit the use of gradient-based methods. In a separate chapter on new gradient-based methods developed by the author and his coworkers, it is shown how these difficulties may be overcome without losing the desirable features of classical gradient-based methods. Audience It is intended that this book be used in senior- to graduate-level semester courses in optimization, as offered in mathematics, engineering, computer science, and operations research departments, and also to be useful to practising professionals in the workplace. 
650 0 |a Mathematics. 
650 0 |a Algorithms. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical optimization. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Algorithms. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387243481 
830 0 |a Applied Optimization,  |x 1384-6485 ;  |v 97 
856 4 0 |u http://dx.doi.org/10.1007/b105200  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)