The Geometry of Syzygies A Second Course in Commutative Algebra and Algebraic Geometry /

Algebraic Geometry often seems very abstract, but in fact it is full of concrete examples and problems. This side of the subject can be approached through the equations of a variety, and the syzygies of these equations are a necessary part of the study. This book is the first textbook-level account...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Eisenbud, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Graduate Texts in Mathematics, 229
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03022nam a22004575i 4500
001 978-0-387-26456-1
003 DE-He213
005 20151204153836.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387264561  |9 978-0-387-26456-1 
024 7 |a 10.1007/b137572  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Eisenbud, David.  |e author. 
245 1 4 |a The Geometry of Syzygies  |h [electronic resource] :  |b A Second Course in Commutative Algebra and Algebraic Geometry /  |c by David Eisenbud. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XIV, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 229 
505 0 |a Free Resolutions and Hilbert Functions -- First Examples of Free Resolutions -- Points in ?2 -- Castelnuovo-Mumford Regularity -- The Regularity of Projective Curves -- Linear Series and 1-Generic Matrices -- Linear Complexes and the Linear Syzygy Theorem -- Curves of High Degree -- Clifford Index and Canonical Embedding. 
520 |a Algebraic Geometry often seems very abstract, but in fact it is full of concrete examples and problems. This side of the subject can be approached through the equations of a variety, and the syzygies of these equations are a necessary part of the study. This book is the first textbook-level account of basic examples and techniques in this area. It illustrates the use of syzygies in many concrete geometric considerations, from interpolation to the study of canonical curves. The text has served as a basis for graduate courses by the author at Berkeley, Brandeis, and in Paris. It is also suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. As an aid to the reader, an appendix provides a summary of commutative algebra, tying together examples and major results from a wide range of topics. David Eisenbud is the director of the Mathematical Sciences Research Institute, President of the American Mathematical Society (2003-2004), and Professor of Mathematics at University of California, Berkeley. His other books include Commutative Algebra with a View Toward Algebraic Geometry (1995), and The Geometry of Schemes, with J. Harris (1999). 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387222158 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 229 
856 4 0 |u http://dx.doi.org/10.1007/b137572  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)