A Field Guide to Algebra

This unique textbook focuses on the structure of fields and is intended for a second course in abstract algebra. Besides providing proofs of the transcendance of pi and e, the book includes material on differential Galois groups and a proof of Hilbert's irreducibility theorem. The reader will h...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chambert-Loir, Antoine (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Undergraduate Texts in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03051nam a22005175i 4500
001 978-0-387-26955-9
003 DE-He213
005 20151112021040.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387269559  |9 978-0-387-26955-9 
024 7 |a 10.1007/b138364  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Chambert-Loir, Antoine.  |e author. 
245 1 2 |a A Field Guide to Algebra  |h [electronic resource] /  |c by Antoine Chambert-Loir. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a X, 198 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Field extensions -- Roots -- Galois theory -- A bit of group theory -- Applications -- Algebraic theory of differential equations. 
520 |a This unique textbook focuses on the structure of fields and is intended for a second course in abstract algebra. Besides providing proofs of the transcendance of pi and e, the book includes material on differential Galois groups and a proof of Hilbert's irreducibility theorem. The reader will hear about equations, both polynomial and differential, and about the algebraic structure of their solutions. In explaining these concepts, the author also provides comments on their historical development and leads the reader along many interesting paths. In addition, there are theorems from analysis: as stated before, the transcendence of the numbers pi and e, the fact that the complex numbers form an algebraically closed field, and also Puiseux's theorem that shows how one can parametrize the roots of polynomial equations, the coefficients of which are allowed to vary. There are exercises at the end of each chapter, varying in degree from easy to difficult. To make the book more lively, the author has incorporated pictures from the history of mathematics, including scans of mathematical stamps and pictures of mathematicians. Antoine Chambert-Loir taught this book when he was Professor at École polytechnique, Palaiseau, France. He is now Professor at Université de Rennes 1. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Field theory (Physics). 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Number Theory. 
650 2 4 |a Commutative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387214283 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u http://dx.doi.org/10.1007/b138364  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)