Using Algebraic Geometry

In recent years, the discovery of new algorithms for dealing with polynomial equations, coupled with their implementation on fast inexpensive computers, has sparked a minor revolution in the study and practice of algebraic geometry. These algorithmic methods have also given rise to some exciting new...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cox, David A. (Συγγραφέας), Little, John (Συγγραφέας), O’shea, Donal (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Έκδοση:Second Edition.
Σειρά:Graduate Texts in Mathematics, 185
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03610nam a22005175i 4500
001 978-0-387-27105-7
003 DE-He213
005 20151218042130.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387271057  |9 978-0-387-27105-7 
024 7 |a 10.1007/b138611  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Cox, David A.  |e author. 
245 1 0 |a Using Algebraic Geometry  |h [electronic resource] /  |c by David A. Cox, John Little, Donal O’shea. 
250 |a Second Edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XII, 575 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 185 
505 0 |a Solving Polynomial Equations -- Resultants -- Computation in Local Rings -- Modules -- Free Resolutions -- Polytopes, Resultants, and Equations -- Polyhedral Regions and Polynomials -- Algebraic Coding Theory -- The Berlekamp-Massey-Sakata Decoding Algorithm. 
520 |a In recent years, the discovery of new algorithms for dealing with polynomial equations, coupled with their implementation on fast inexpensive computers, has sparked a minor revolution in the study and practice of algebraic geometry. These algorithmic methods have also given rise to some exciting new applications of algebraic geometry. This book illustrates the many uses of algebraic geometry, highlighting some of the more recent applications of Gröbner bases and resultants. The book is written for nonspecialists and for readers with a diverse range of backgrounds. It assumes knowledge of the material covered in a standard undergraduate course in abstract algebra, and it would help to have some previous exposure to Gröbner bases. The book does not assume the reader is familiar with more advanced concepts such as modules. For the new edition, the authors have added a unified discussion of how matrices can be used to specify monomial orders; a revised presentation of the Mora normal form algorithm; two sections discussing the Gröbner fan of an ideal and the Gröbner Walk basis conversion algorithm; and a new chapter on the theory of order domains, associated codes, and the Berlekamp-Massey-Sakata decoding algorithm. They have also updated the references, improved some of the proofs, and corrected typographical errors. David Cox is Professor of Mathematics at Amherst College. John Little is Professor of Mathematics at College of the Holy Cross. Dona l O’Shea is the Elizabeth T. Kennan Professor of Mathematics and Dean of Faculty at Mt. Holyoke College. These authors also co-wrote the immensely successful book, Ideals, Varieties, and Algorithms. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Algorithms. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
650 2 4 |a Algorithms. 
700 1 |a Little, John.  |e author. 
700 1 |a O’shea, Donal.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387207063 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 185 
856 4 0 |u http://dx.doi.org/10.1007/b138611  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)