Statistical and Computational Inverse Problems

The book develops the statistical approach to inverse problems with an emphasis on modeling and computations. The framework is the Bayesian paradigm, where all variables are modeled as random variables, the randomness reflecting the degree of belief of their values, and the solution of the inverse p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kaipio, Jari P. (Συγγραφέας), Somersalo, Erkki (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Applied Mathematical Sciences, 160
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03788nam a22006015i 4500
001 978-0-387-27132-3
003 DE-He213
005 20151204152939.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387271323  |9 978-0-387-27132-3 
024 7 |a 10.1007/b138659  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Kaipio, Jari P.  |e author. 
245 1 0 |a Statistical and Computational Inverse Problems  |h [electronic resource] /  |c by Jari P. Kaipio, Erkki Somersalo. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XVI, 340 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 160 
505 0 |a Inverse Problems and Interpretation of Measurements -- Classical Regularization Methods -- Statistical Inversion Theory -- Nonstationary Inverse Problems -- Classical Methods Revisited -- Model Problems -- Case Studies. 
520 |a The book develops the statistical approach to inverse problems with an emphasis on modeling and computations. The framework is the Bayesian paradigm, where all variables are modeled as random variables, the randomness reflecting the degree of belief of their values, and the solution of the inverse problem is expressed in terms of probability densities. The book discusses in detail the construction of prior models, the measurement noise modeling and Bayesian estimation. Markov Chain Monte Carlo-methods as well as optimization methods are employed to explore the probability distributions. The results and techniques are clarified with classroom examples that are often non-trivial but easy to follow. Besides the simple examples, the book contains previously unpublished research material, where the statistical approach is developed further to treat such problems as discretization errors, and statistical model reduction. Furthermore, the techniques are then applied to a number of real world applications such as limited angle tomography, image deblurring, electrical impedance tomography and biomagnetic inverse problems. The book is intended to researchers and advanced students in applied mathematics, computational physics and engineering. The first part of the book can be used as a text book on advanced inverse problems courses. The authors Jari Kaipio and Erkki Somersalo are Professors in the Applied Physics Department of the University of Kuopio, Finland and the Mathematics Department at the Helsinki University of Technology, Finland, respectively. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 0 |a Physics. 
650 0 |a Complexity, Computational. 
650 0 |a Biomedical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Analysis. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Complexity. 
650 2 4 |a Biomedical Engineering. 
700 1 |a Somersalo, Erkki.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387220734 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 160 
856 4 0 |u http://dx.doi.org/10.1007/b138659  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)