A First Course in Modular Forms

This book introduces the theory of modular forms with an eye toward the Modularity Theorem: All rational elliptic curves arise from modular forms. The topics covered include • elliptic curves as complex tori and as algebraic curves, • modular curves as Riemann surfaces and as algebraic curves, • Hec...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Diamond, Fred (Συγγραφέας), Shurman, Jerry (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2005.
Σειρά:Graduate Texts in Mathematics, 228
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03182nam a22004695i 4500
001 978-0-387-27226-9
003 DE-He213
005 20170303141257.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387272269  |9 978-0-387-27226-9 
024 7 |a 10.1007/978-0-387-27226-9  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Diamond, Fred.  |e author. 
245 1 2 |a A First Course in Modular Forms  |h [electronic resource] /  |c by Fred Diamond, Jerry Shurman. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XVI, 450 p. 57 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 228 
505 0 |a Modular Forms, Elliptic Curves, and Modular Curves -- Modular Curves as Riemann Surfaces -- Dimension Formulas -- Eisenstein Series -- Hecke Operators -- Jacobians and Abelian Varieties -- Modular Curves as Algebraic Curves -- The Eichler-Shimura Relation and L-functions -- Galois Representations. . 
520 |a This book introduces the theory of modular forms with an eye toward the Modularity Theorem: All rational elliptic curves arise from modular forms. The topics covered include • elliptic curves as complex tori and as algebraic curves, • modular curves as Riemann surfaces and as algebraic curves, • Hecke operators and Atkin–Lehner theory, • Hecke eigenforms and their arithmetic properties, • the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms, • elliptic and modular curves modulo p and the Eichler–Shimura Relation, • the Galois representations associated to elliptic curves and to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. A First Course in Modular Forms is written for beginning graduate students and advanced undergraduates. It does not require background in algebraic number theory or algebraic geometry, and it contains exercises throughout. Fred Diamond received his Ph.D from Princeton University in 1988 under the direction of Andrew Wiles and now teaches at King's College London. Jerry Shurman received his Ph.D from Princeton University in 1988 under the direction of Goro Shimura and now teaches at Reed College. . 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Shurman, Jerry.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441920058 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 228 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-27226-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)