Spaces of Holomorphic Functions in the Unit Ball

There has been a flurry of activity in recent years in the loosely defined area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zhu, Kehe (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Graduate Texts in Mathematics, 226
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03036nam a22004695i 4500
001 978-0-387-27539-0
003 DE-He213
005 20151204143214.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387275390  |9 978-0-387-27539-0 
024 7 |a 10.1007/0-387-27539-8  |2 doi 
040 |d GrThAP 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
100 1 |a Zhu, Kehe.  |e author. 
245 1 0 |a Spaces of Holomorphic Functions in the Unit Ball  |h [electronic resource] /  |c by Kehe Zhu. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a X, 274 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 226 
505 0 |a Preliminaries -- Bergman Spaces -- The Bloch Space -- Hardy Spaces -- Functions of Bounded Mean Oscillation -- Besov Spaces -- Lipschitz Spaces. 
520 |a There has been a flurry of activity in recent years in the loosely defined area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literature. The central idea in almost all these proofs is based on integral representations of holomorphic functions and elementary properties of the Bergman kernel, the Bergman metric, and the automorphism group. The unit ball was chosen as the setting since most results can be achieved there using straightforward formulas without much fuss. The book can be read comfortably by anyone familiar with single variable complex analysis; no prerequisite on several complex variables is required. The author has included exercises at the end of each chapter that vary greatly in the level of difficulty. Kehe Zhu is Professor of Mathematics at State University of New York at Albany. His previous books include Operator Theory in Function Spaces (Marcel Dekker 1990), Theory of Bergman Spaces, with H. Hedenmalm and B. Korenblum (Springer 2000), and An Introduction to Operator Algebras (CRC Press 1993). 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387220369 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 226 
856 4 0 |u http://dx.doi.org/10.1007/0-387-27539-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)