A First Course in Harmonic Analysis

From the reviews of the first edition: "This lovely book is intended as a primer in harmonic analysis at the undergraduate level. All the central concepts of harmonic analysis are introduced using Riemann integral and metric spaces only. The exercises at the end of each chapter are interesting...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Deitmar, Anton (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Έκδοση:Second Edition.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03876nam a22005655i 4500
001 978-0-387-27561-1
003 DE-He213
005 20151204173919.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387275611  |9 978-0-387-27561-1 
024 7 |a 10.1007/0-387-27561-4  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Deitmar, Anton.  |e author. 
245 1 2 |a A First Course in Harmonic Analysis  |h [electronic resource] /  |c by Anton Deitmar. 
250 |a Second Edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XI, 192 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Fourier Analysis -- Fourier Series -- Hilbert Spaces -- The Fourier Transform -- Distributions -- LCA Groups -- Finite Abelian Groups -- LCA Groups -- The Dual Group -- Plancherel Theorem -- Noncommutative Groups -- Matrix Groups -- The Representations of SU(2) -- The Peter-Weyl Theorem -- The Heisenberg Group. 
520 |a From the reviews of the first edition: "This lovely book is intended as a primer in harmonic analysis at the undergraduate level. All the central concepts of harmonic analysis are introduced using Riemann integral and metric spaces only. The exercises at the end of each chapter are interesting and challenging..." Sanjiv Kumar Gupta for MathSciNet "... In this well-written textbook the central concepts of Harmonic Analysis are explained in an enjoyable way, while using very little technical background. Quite surprisingly this approach works. It is not an exaggeration that each undergraduate student interested in and each professor teaching Harmonic Analysis will benefit from the streamlined and direct approach of this book." Ferenc Móricz for Acta Scientiarum Mathematicarum This book is a primer in harmonic analysis using an elementary approach. Its first aim is to provide an introduction to Fourier analysis, leading up to the Poisson Summation Formula. Secondly, it makes the reader aware of the fact that both, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The third goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. There are two new chapters in this new edition. One on distributions will complete the set of real variable methods introduced in the first part. The other on the Heisenberg Group provides an example of a group that is neither compact nor abelian, yet is simple enough to easily deduce the Plancherel Theorem. Professor Deitmar is Professor of Mathematics at the University of T"ubingen, Germany. He is a former Heisenberg fellow and has taught in the U.K. for some years. In his leisure time he enjoys hiking in the mountains and practicing Aikido. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Harmonic analysis. 
650 0 |a Functional analysis. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topology. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387228372 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/0-387-27561-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)