Dualisability Unary Algebras and Beyond /

Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems. Unary algebras play a special role throughout...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pitkethly, Jane (Συγγραφέας), Davey, Brian (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2005.
Σειρά:Advances in Mathematics ; 9
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03026nam a22005175i 4500
001 978-0-387-27570-3
003 DE-He213
005 20151103130345.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387275703  |9 978-0-387-27570-3 
024 7 |a 10.1007/0-387-27570-3  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Pitkethly, Jane.  |e author. 
245 1 0 |a Dualisability  |h [electronic resource] :  |b Unary Algebras and Beyond /  |c by Jane Pitkethly, Brian Davey. 
264 1 |a Boston, MA :  |b Springer US,  |c 2005. 
300 |a XII, 264 p. 38 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mathematics ;  |v 9 
505 0 |a Unary algebras and dualisability -- Binary homomorphisms and natural dualities -- The complexity of dualisability: three-element unary algebras -- Full and strong dualisability: three-element unary algebras -- Dualisability and algebraic constructions -- Dualisability and clones -- Inherent dualisability. 
520 |a Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems. Unary algebras play a special role throughout the text. Individual unary algebras are relatively simple and easy to work with. But as a class they have a rich and complex entanglement with dualisability. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples. A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability. Audience This book is intended for established researchers in natural duality theory, general algebraists wishing to commence research in duality theory, and graduate students in algebra. 
650 0 |a Mathematics. 
650 0 |a Science. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Combinatorics. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
650 2 4 |a Science, general. 
700 1 |a Davey, Brian.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387275697 
830 0 |a Advances in Mathematics ;  |v 9 
856 4 0 |u http://dx.doi.org/10.1007/0-387-27570-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)