Testing Statistical Hypotheses

The third edition of Testing Statistical Hypotheses updates and expands upon the classic graduate text, emphasizing optimality theory for hypothesis testing and confidence sets. The principal additions include a rigorous treatment of large sample optimality, together with the requisite tools. In add...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lehmann, E. L. (Συγγραφέας), Romano, Joseph P. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Έκδοση:3.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03378nam a22004455i 4500
001 978-0-387-27605-2
003 DE-He213
005 20151204152937.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387276052  |9 978-0-387-27605-2 
024 7 |a 10.1007/0-387-27605-X  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Lehmann, E. L.  |e author. 
245 1 0 |a Testing Statistical Hypotheses  |h [electronic resource] /  |c by E. L. Lehmann, Joseph P. Romano. 
250 |a 3. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XIV, 786 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Small-Sample Theory -- The General Decision Problem -- The Probability Background -- Uniformly Most Powerful Tests -- Unbiasedness: Theory and First Applications -- Unbiasedness: Applications to Normal Distributions; Confidence Intervals -- Invariance -- Linear Hypotheses -- The Minimax Principle -- Multiple Testing and Simultaneous Inference -- Conditional Inference -- Large-Sample Theory -- Basic Large Sample Theory -- Quadratic Mean Differentiable Families -- Large Sample Optimality -- Testing Goodness of Fit -- General Large Sample Methods. . 
520 |a The third edition of Testing Statistical Hypotheses updates and expands upon the classic graduate text, emphasizing optimality theory for hypothesis testing and confidence sets. The principal additions include a rigorous treatment of large sample optimality, together with the requisite tools. In addition, an introduction to the theory of resampling methods such as the bootstrap is developed. The sections on multiple testing and goodness of fit testing are expanded. The text is suitable for Ph.D. students in statistics and includes over 300 new problems out of a total of more than 760. E.L. Lehmann is Professor of Statistics Emeritus at the University of California, Berkeley. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands and the University of Chicago. He is the author of Elements of Large-Sample Theory and (with George Casella) he is also the author of Theory of Point Estimation, Second Edition. Joseph P. Romano is Professor of Statistics at Stanford University. He is a recipient of a Presidential Young Investigator Award and a Fellow of the Institute of Mathematical Statistics. He has coauthored two other books, Subsampling with Dimitris Politis and Michael Wolf, and Counterexamples in Probability and Statistics with Andrew Siegel. . 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Romano, Joseph P.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387988641 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/0-387-27605-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)