Statistical and Inductive Inference by Minimum Message Length

The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wallace, C.S (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Information Science and Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03959nam a22004935i 4500
001 978-0-387-27656-4
003 DE-He213
005 20151030111204.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387276564  |9 978-0-387-27656-4 
024 7 |a 10.1007/0-387-27656-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Wallace, C.S.  |e author. 
245 1 0 |a Statistical and Inductive Inference by Minimum Message Length  |h [electronic resource] /  |c by C.S. Wallace. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XVI, 432 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 1613-9011 
505 0 |a Inductive Inference -- Information -- Strict Minimum Message Length (SMML) -- Approximations to SMML -- MML: Quadratic Approximations to SMML -- MML Details in Some Interesting Cases -- Structural Models -- The Feathers on the Arrow of Time -- MML as a Descriptive Theory -- Related Work. 
520 |a The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle. 
650 0 |a Statistics. 
650 0 |a Coding theory. 
650 0 |a Mathematical statistics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Probability and Statistics in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387237954 
830 0 |a Information Science and Statistics,  |x 1613-9011 
856 4 0 |u http://dx.doi.org/10.1007/0-387-27656-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)