Topics in Banach Space Theory

Assuming only a basic knowledge of functional analysis, the book gives the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Albiac, Fernando (Συγγραφέας), Kalton, Nigel J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Σειρά:Graduate Texts in Mathematics, 233
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03104nam a22004455i 4500
001 978-0-387-28142-1
003 DE-He213
005 20140305034324.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387281421  |9 978-0-387-28142-1 
024 7 |a 10.1007/0-387-28142-8  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Albiac, Fernando.  |e author. 
245 1 0 |a Topics in Banach Space Theory  |h [electronic resource] /  |c by Fernando Albiac, Nigel J. Kalton. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XI, 376 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 233 
505 0 |a Bases and Basic Sequences -- The Classical Sequence Spaces -- Special Types of Bases -- Banach Spaces of Continuous Functions -- L1(?)-Spaces and C(K)-Spaces -- The Lp-Spaces for 1 ? p < ? -- Factorization Theory -- Absolutely Summing Operators -- Perfectly Homogeneous Bases and Their Applications -- ?p-Subspaces of Banach Spaces -- Finite Representability of ?p-Spaces -- An Introduction to Local Theory -- Important Examples of Banach Spaces. 
520 |a Assuming only a basic knowledge of functional analysis, the book gives the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. The aim of this text is to provide the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. Fernando Albiac received his PhD in 2000 from Universidad Publica de Navarra, Spain. He is currently Visiting Assistant Professor of Mathematics at the University of Missouri, Columbia. Nigel Kalton is Professor of Mathematics at the University of Missouri, Columbia. He has written over 200 articles with more than 82 different co-authors, and most recently, was the recipient of the 2004 Banach medal of the Polish Academy of Sciences. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
700 1 |a Kalton, Nigel J.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387281414 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 233 
856 4 0 |u http://dx.doi.org/10.1007/0-387-28142-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)