Modeling Longitudinal Data

Longitudinal data are ubiquitous across Medicine, Public Health, Public Policy, Psychology, Political Science, Biology, Sociology and Education, yet many longitudinal data sets remain improperly analyzed. This book teaches the art and statistical science of modern longitudinal data analysis. The aut...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Weiss, Robert E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04641nam a22005175i 4500
001 978-0-387-28314-2
003 DE-He213
005 20151204160922.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387283142  |9 978-0-387-28314-2 
024 7 |a 10.1007/0-387-28314-5  |2 doi 
040 |d GrThAP 
050 4 |a RA648.5-654 
072 7 |a MBNS  |2 bicssc 
072 7 |a MED028000  |2 bisacsh 
082 0 4 |a 614.4  |2 23 
100 1 |a Weiss, Robert E.  |e author. 
245 1 0 |a Modeling Longitudinal Data  |h [electronic resource] /  |c by Robert E. Weiss. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XXII, 432 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a to Longitudinal Data -- Plots -- Simple Analyses -- Critiques of Simple Analyses -- The Multivariate Normal Linear Model -- Tools and Concepts -- Specifying Covariates -- Modeling the Covariance Matrix -- Random Effects Models -- Residuals and Case Diagnostics -- Discrete Longitudinal Data -- Missing Data -- Analyzing Two Longitudinal Variables -- Further Reading. 
520 |a Longitudinal data are ubiquitous across Medicine, Public Health, Public Policy, Psychology, Political Science, Biology, Sociology and Education, yet many longitudinal data sets remain improperly analyzed. This book teaches the art and statistical science of modern longitudinal data analysis. The author emphasizes specifying, understanding, and interpreting longitudinal data models. He inspects the longitudinal data graphically, analyzes the time trend and covariates, models the covariance matrix, and then draws conclusions. Covariance models covered include random effects, autoregressive, autoregressive moving average, antedependence, factor analytic, and completely unstructured models among others. Longer expositions explore: an introduction to and critique of simple non-longitudinal analyses of longitudinal data, missing data concepts, diagnostics, and simultaneous modeling of two longitudinal variables. Applications and issues for random effects models cover estimation, shrinkage, clustered data, models for binary and count data and residuals and residual plots. Shorter sections include a general discussion of how computational algorithms work, handling transformed data, and basic design issues. This book requires a solid regression course as background and is particularly intended for the final year of a Biostatistics or Statistics Masters degree curriculum. The mathematical prerequisite is generally low, mainly assuming familiarity with regression analysis in matrix form. Doctoral students in Biostatistics or Statistics, applied researchers and quantitative doctoral students in disciplines such as Medicine, Public Health, Public Policy, Psychology, Political Science, Biology, Sociology and Education will find this book invaluable. The book has many figures and tables illustrating longitudinal data and numerous homework problems. The associated web site contains many longitudinal data sets, examples of computer code, and labs to re-enforce the material. Robert Weiss is Professor of Biostatistics in the UCLA School of Public Health with a Ph.D. in Statistics from the University of Minnesota. He is expert in longitudinal data analysis, diagnostics and graphics, and Bayesian methods, and specializes in modeling of hierarchical and complex data sets. He has published over 50 papers a majority of which involves longitudinal data. He regularly teaches classes in longitudinal data analysis, multivariate analysis, Bayesian inference, and statistical graphics. 
650 0 |a Medicine. 
650 0 |a Science. 
650 0 |a Epidemiology. 
650 0 |a Statistics. 
650 1 4 |a Medicine & Public Health. 
650 2 4 |a Epidemiology. 
650 2 4 |a Science, general. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387402710 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/0-387-28314-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)