S+ Functional Data Analysis User’s Manual for Windows® /

S+Functional Data Analysis is the first commercial object oriented package for exploring, modeling, and analyzing functional data. Functional data analysis (FDA) handles longitudinal data and treats each observation as a function of time (or other variable). The functions are related. The goal is to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Clarkson, Douglas B. (Συγγραφέας), Fraley, Chris (Συγγραφέας), Gu, Charles C. (Συγγραφέας), Ramsey, James O. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03414nam a22004695i 4500
001 978-0-387-28393-7
003 DE-He213
005 20151204143538.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387283937  |9 978-0-387-28393-7 
024 7 |a 10.1007/0-387-28393-5  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Clarkson, Douglas B.  |e author. 
245 1 0 |a S+ Functional Data Analysis  |h [electronic resource] :  |b User’s Manual for Windows® /  |c by Douglas B. Clarkson, Chris Fraley, Charles C. Gu, James O. Ramsey. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a X, 192 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Basis Objects and Operations -- Functional Data Objects and Operations -- Linear Differential Operators and Smoothing -- Functional Registration -- Functional Linear Models -- Functional Generalized Linear Models -- Functional Principal Components -- Canonical Correlation -- Functional Cluster Analysis -- Principal Differential Analysis. 
520 |a S+Functional Data Analysis is the first commercial object oriented package for exploring, modeling, and analyzing functional data. Functional data analysis (FDA) handles longitudinal data and treats each observation as a function of time (or other variable). The functions are related. The goal is to analyze a sample of functions instead of a sample of related points. FDA differs from traditional data analytic techniques in a number of ways. Functions can be evaluated at any point in their domain. Derivatives and integrals, which may provide better information (e.g. graphical) than the original data, are easily computed and used in multivariate and other functional analytic methods. The analyst using S+FDA can handle irregularly spaced data or data with missing values. For large amounts of data, working with a functional representation can save storage. Moreover, S+FDA provides a variety of analytic techniques for functional data including linear models, generalized linear models, principal components, canonical correlation, principal differential analysis, and clustering. This book can be considered a companion to two other highly acclaimed books involving James Ramsay and Bernard Silverman: Functional Data Analysis, Second Edition (2005) and Applied Functional Data Analysis (2002). This user's manual also provides the documentation for the S+FDA library for S­Plus. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
700 1 |a Fraley, Chris.  |e author. 
700 1 |a Gu, Charles C.  |e author. 
700 1 |a Ramsey, James O.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387249698 
856 4 0 |u http://dx.doi.org/10.1007/0-387-28393-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)