Mathematics Is Not a Spectator Sport

Mathematics Is Not a Spectator Sport challenges the reader to become an active mathematician. Beginning at a gentle pace, the author encourages the reader to get involved, with discussions of an exciting variety of topics, each placed in its historical context, including: * The surprising achievemen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Phillips, George M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03299nam a22005055i 4500
001 978-0-387-28697-6
003 DE-He213
005 20151204160217.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387286976  |9 978-0-387-28697-6 
024 7 |a 10.1007/0-387-28697-7  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Phillips, George M.  |e author. 
245 1 0 |a Mathematics Is Not a Spectator Sport  |h [electronic resource] /  |c by George M. Phillips. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XIV, 240 p. 68 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Squares -- Numbers, Numbers Everywhere -- Fibonacci Numbers -- Prime Numbers -- Choice and Chance -- Geometrical Constructions -- The Algebra of Group. 
520 |a Mathematics Is Not a Spectator Sport challenges the reader to become an active mathematician. Beginning at a gentle pace, the author encourages the reader to get involved, with discussions of an exciting variety of topics, each placed in its historical context, including: * The surprising achievements of early Babylonian mathematics; * The fascinating arithmetic of continued fractions; * Geometric origins of the Euclidean algorithm; * Infinite sets and the pioneering work of Georg Cantor; * The sieve of Eratosthenes, which is used for finding primes; * Gauss's conjecture about the density of primes; * Special methods for finding really large primes, and a discussion of the famous Riemann hypothesis; * A combinatorial interpretation of the Fibonacci numbers; * A study of properties of the triangle, including one named after Napoleon; * The application of algebraic methods to solve geometrical problems; * The study of symmetries using algebraic methods; * The foundations of group theory; * An algebraic interpretation of the Platonic solids. The chapters are largely self-contained and each topic can be understood independently. However, the author draws many connections between the various topics to demonstrate their interplay and role within the context of mathematics as a whole. Lots of carefully chosen problems are included at the end of each section to stimulate the reader's development as a mathematician. This book is intended for those beginning their study of mathematics at the university level, as well as the general reader who would like to learn more about what it means to "do" mathematics. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Algebra. 
650 2 4 |a Analysis. 
650 2 4 |a Geometry. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387255286 
856 4 0 |u http://dx.doi.org/10.1007/0-387-28697-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)