Handbook of Mathematical Models in Computer Vision

Visual perception refers to the ability of understanding the visual information that is provided by the environment. Such a mechanism integrates several human abilities and was studied by many researchers with different scientific origins including philosophy, physiology, biology, neurobiology, math...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Paragios, Nikos (Επιμελητής έκδοσης), Chen, Yunmei (Επιμελητής έκδοσης), Faugeras, Olivier (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05204nam a22005055i 4500
001 978-0-387-28831-4
003 DE-He213
005 20151204171416.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387288314  |9 978-0-387-28831-4 
024 7 |a 10.1007/0-387-28831-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.C65 
072 7 |a UGK  |2 bicssc 
072 7 |a COM072000  |2 bisacsh 
082 0 4 |a 003.3  |2 23 
245 1 0 |a Handbook of Mathematical Models in Computer Vision  |h [electronic resource] /  |c edited by Nikos Paragios, Yunmei Chen, Olivier Faugeras. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XXXIV, 606 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Image Reconstruction -- Diffusion Filters and Wavelets: What Can They Learn from Each Other? -- Total Variation Image Restoration: Overview and Recent Developments -- PDE-Based Image and Surface Inpainting -- Boundary Exraction, Segmentation and Grouping -- Levelings: Theory and Practice -- Graph Cuts in Vision and Graphics: Theories and Applications -- Minimal Paths and Fast Marching Methods for Image Analysis -- Integrating Shape and Texture in DeformabIe Models: from Hybrid Methods to Metamorphs -- Variational Segmentation with Shape Priors -- Curve Propagation, Level Set Methods and Grouping -- On a Stochastic Model of Geometric Snakes -- Shape Modeling & Registration -- Invariant Processing and Occlusion Resistant Recognition of Planar Shapes -- Planar Shape Analysis and Its Applications in Image-Based Inferences -- Diffeomorphic Point Matching -- Uncertainty-Driven, Point-Based Image Registration -- Motion Analysis, Optical Flow & Tracking -- Optical Flow Estimation -- From Bayes to PDEs in Image Warping -- Image Alignment and Stitching -- Visual Tracking: A Short Research Roadmap -- Shape Gradient for Image and Video Segmentation -- Model-Based Human Motion Capture -- Modeling Dynamic Scenes: An Overview of Dynamic Textures -- 3D from Images, Projective Geometry & Stereo Reconstruction -- Differential Geometry from the Frenet Point of View: Boundary Detection, Stereo, Texture and Color -- Shape From Shading -- 3D from Image Sequences: Calibration, Motion and Shape Recovery -- Multi-view Reconstruction of Static and Dynamic Scenes -- Graph Cut Algorithms for Binocular Stereo with Occlusions -- Modelling Non-Rigid Dynamic Scenes from Multi-View Image Sequences -- Applications: Medical Image Analysis -- Interactive Graph-Based Segmentation Methods in Cardiovascular Imaging -- 3D Active Shape and Appearance Models in Cardiac Image Analysis -- Characterization of Diffusion Anisotropy in DWI -- Segmentation of Diffusion Tensor Images -- Variational Approaches to the Estimation, Regularizatinn and Segmentation of Diffusion Tensor Images -- An Introduction to Statistical Methods of Medical Image Registration. 
520 |a Visual perception refers to the ability of understanding the visual information that is provided by the environment. Such a mechanism integrates several human abilities and was studied by many researchers with different scientific origins including philosophy, physiology, biology, neurobiology, mathematics and engineering. In particular in the recent years an effort to understand, formalize and finally reproduce mechanical visual perception systems able to see and understand the environment using computational theories was made by mathematicians, statisticians and engineers. Such a task connects visual tasks with optimization processes and the answer to the visual perception task corresponds to the lowest potential of a task-driven objective function. In this edited volume we present the most prominent mathematical models that are considered in computational vision. To this end, tasks of increasing complexity are considered and we present the state-of-the-art methods to cope with such tasks. The volume consists of six thematic areas that provide answers to the most dominant questions of computational vision: Image reconstruction, Segmentation and object extraction, Shape modeling and registration, Motion analysis and tracking, 3D from images, geometry and reconstruction Applications in medical image analysis. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer simulation. 
650 0 |a Computer graphics. 
650 0 |a Mathematical models. 
650 1 4 |a Computer Science. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Math Applications in Computer Science. 
700 1 |a Paragios, Nikos.  |e editor. 
700 1 |a Chen, Yunmei.  |e editor. 
700 1 |a Faugeras, Olivier.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387263717 
856 4 0 |u http://dx.doi.org/10.1007/0-387-28831-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)