Galois Theory

Classical Galois theory is a subject generally acknowledged to be one of the most central and beautiful areas in pure mathematics. This text develops the subject systematically and from the beginning, requiring of the reader only basic facts about polynomials and a good knowledge of linear algebra....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Weintraub, Steven H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03306nam a22005055i 4500
001 978-0-387-28917-5
003 DE-He213
005 20151125022104.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387289175  |9 978-0-387-28917-5 
024 7 |a 10.1007/0-387-28917-8  |2 doi 
040 |d GrThAP 
050 4 |a QA161.A-161.Z 
050 4 |a QA161.P59 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.3  |2 23 
100 1 |a Weintraub, Steven H.  |e author. 
245 1 0 |a Galois Theory  |h [electronic resource] /  |c by Steven H. Weintraub. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XIII, 190 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a to Galois Theory -- Field Theory and Galois Theory -- Development and Applications of Galois Theory -- Extensions of the field of Rational Numbers -- Further Topics in Field Theory. 
520 |a Classical Galois theory is a subject generally acknowledged to be one of the most central and beautiful areas in pure mathematics. This text develops the subject systematically and from the beginning, requiring of the reader only basic facts about polynomials and a good knowledge of linear algebra. Key topics and features of this book: - Approaches Galois theory from the linear algebra point of view, following Artin - Develops the basic concepts and theorems of Galois theory, including algebraic, normal, separable, and Galois extensions, and the Fundamental Theorem of Galois Theory - Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity - Excellent motivaton and examples throughout The book discusses Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. While most of the book is concerned with finite extensions, it concludes with a discussion of the algebraic closure and of infinite Galois extensions. Steven H. Weintraub is Professor and Chair of the Department of Mathematics at Lehigh University. This book, his fifth, grew out of a graduate course he taught at Lehigh. His other books include Algebra: An Approach via Module Theory (with W. A. Adkins). 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Group theory. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387287256 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/0-387-28917-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)