Lie Groups An Approach through Invariants and Representations /

Lie groups has been an increasing area of focus and rich research since the middle of the 20th century. Procesi's masterful approach to Lie groups through invariants and representations gives the reader a comprehensive treatment of the classical groups along with an extensive introduction to a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Procesi, Claudio (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02940nam a22004815i 4500
001 978-0-387-28929-8
003 DE-He213
005 20131218203535.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387289298  |9 978-0-387-28929-8 
024 7 |a 10.1007/978-0-387-28929-8  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Procesi, Claudio.  |e author. 
245 1 0 |a Lie Groups  |h [electronic resource] :  |b An Approach through Invariants and Representations /  |c by Claudio Procesi. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XXIV, 600 p. 18 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a General Methods and Ideas -- Symmetric Functions -- Theory of Algebraic Forms -- Lie Algebras and lie Groups -- Tensor Algebra -- Semisimple Algebras -- Algebraic Groups -- Group Representations -- Tensor Symmetry -- Semisimple Lie Groups and Algebras -- Invariants -- Tableaux -- Standard Monomials -- Hilbert Theory -- Binary Forms. 
520 |a Lie groups has been an increasing area of focus and rich research since the middle of the 20th century. Procesi's masterful approach to Lie groups through invariants and representations gives the reader a comprehensive treatment of the classical groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariants, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis. Key to this unique exposition is the large amount of background material presented so the book is accessible to a reader with relatively modest mathematical background. Historical information, examples, exercises are all woven into the text. Lie Groups: An Approach through Invariants and Representations will engage a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Functional analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387260402 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-28929-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)