Inference in Hidden Markov Models
Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statist...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2005.
|
Σειρά: | Springer Series in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Main Definitions and Notations
- Main Definitions and Notations
- State Inference
- Filtering and Smoothing Recursions
- Advanced Topics in Smoothing
- Applications of Smoothing
- Monte Carlo Methods
- Sequential Monte Carlo Methods
- Advanced Topics in Sequential Monte Carlo
- Analysis of Sequential Monte Carlo Methods
- Parameter Inference
- Maximum Likelihood Inference, Part I: Optimization Through Exact Smoothing
- Maximum Likelihood Inference, Part II: Monte Carlo Optimization
- Statistical Properties of the Maximum Likelihood Estimator
- Fully Bayesian Approaches
- Background and Complements
- Elements of Markov Chain Theory
- An Information-Theoretic Perspective on Order Estimation.