Inference in Hidden Markov Models

Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statist...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cappé, Olivier (Συγγραφέας), Moulines, Eric (Συγγραφέας), Rydén, Tobias (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Main Definitions and Notations
  • Main Definitions and Notations
  • State Inference
  • Filtering and Smoothing Recursions
  • Advanced Topics in Smoothing
  • Applications of Smoothing
  • Monte Carlo Methods
  • Sequential Monte Carlo Methods
  • Advanced Topics in Sequential Monte Carlo
  • Analysis of Sequential Monte Carlo Methods
  • Parameter Inference
  • Maximum Likelihood Inference, Part I: Optimization Through Exact Smoothing
  • Maximum Likelihood Inference, Part II: Monte Carlo Optimization
  • Statistical Properties of the Maximum Likelihood Estimator
  • Fully Bayesian Approaches
  • Background and Complements
  • Elements of Markov Chain Theory
  • An Information-Theoretic Perspective on Order Estimation.