Nonparametric Monte Carlo Tests and Their Applications

A fundamental issue in statistical analysis is testing the fit of a particular probability model to a set of observed data. Monte Carlo approximation to the null distribution of the test provides a convenient and powerful means of testing model fit. Nonparametric Monte Carlo Tests and Their Applicat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zhu, Lixing (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Lecture Notes in Statistics, 182
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03834nam a22004215i 4500
001 978-0-387-29053-9
003 DE-He213
005 20151204144134.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387290539  |9 978-0-387-29053-9 
024 7 |a 10.1007/0-387-29053-2  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Zhu, Lixing.  |e author. 
245 1 0 |a Nonparametric Monte Carlo Tests and Their Applications  |h [electronic resource] /  |c by Lixing Zhu. 
264 1 |a New York, NY :  |b Springer New York,  |c 2005. 
300 |a XI, 184 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 182 
505 0 |a Monte Carlo Tests -- Testing for Multivariate Distributions -- Asymptotics of Goodness-of-fit Tests for Symmetry -- A Test of Dimension-Reduction Type for Regressions -- Checking the Adequacy of a Partially Linear Model -- Model Checking for Multivariate Regression Models -- Heteroscedasticity Tests for Regressions -- Checking the Adequacy of a Varying-Coefficients Model -- On the Mean Residual Life Regression Model -- Homegeneity Testing for Covariance Matrices. 
520 |a A fundamental issue in statistical analysis is testing the fit of a particular probability model to a set of observed data. Monte Carlo approximation to the null distribution of the test provides a convenient and powerful means of testing model fit. Nonparametric Monte Carlo Tests and Their Applications proposes a new Monte Carlo-based methodology to construct this type of approximation when the model is semistructured. When there are no nuisance parameters to be estimated, the nonparametric Monte Carlo test can exactly maintain the significance level, and when nuisance parameters exist, this method can allow the test to asymptotically maintain the level. The author addresses both applied and theoretical aspects of nonparametric Monte Carlo tests. The new methodology has been used for model checking in many fields of statistics, such as multivariate distribution theory, parametric and semiparametric regression models, multivariate regression models, varying-coefficient models with longitudinal data, heteroscedasticity, and homogeneity of covariance matrices. This book will be of interest to both practitioners and researchers investigating goodness-of-fit tests and resampling approximations. Every chapter of the book includes algorithms, simulations, and theoretical deductions. The prerequisites for a full appreciation of the book are a modest knowledge of mathematical statistics and limit theorems in probability/empirical process theory. The less mathematically sophisticated reader will find Chapters 1, 2 and 6 to be a comprehensible introduction on how and where the new method can apply and the rest of the book to be a valuable reference for Monte Carlo test approximation and goodness-of-fit tests. Lixing Zhu is Associate Professor of Statistics at the University of Hong Kong. He is a winner of the Humboldt Research Award at Alexander-von Humboldt Foundation of Germany and an elected Fellow of the Institute of Mathematical Statistics.>. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387250380 
830 0 |a Lecture Notes in Statistics,  |x 0930-0325 ;  |v 182 
856 4 0 |u http://dx.doi.org/10.1007/0-387-29053-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)