Markov Chains: Models, Algorithms and Applications

Markov chains are a particularly powerful and widely used tool for analyzing a variety of stochastic (probabilistic) systems over time. This monograph will present a series of Markov models, starting from the basic models and then building up to higher-order models. Included in the higher-order disc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ching, Wai-Ki (Συγγραφέας), Ng, Michael K. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Σειρά:International Series in Operations Research & Management Science, 83
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03337nam a22006015i 4500
001 978-0-387-29337-0
003 DE-He213
005 20151204145115.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387293370  |9 978-0-387-29337-0 
024 7 |a 10.1007/0-387-29337-X  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Ching, Wai-Ki.  |e author. 
245 1 0 |a Markov Chains: Models, Algorithms and Applications  |h [electronic resource] /  |c by Wai-Ki Ching, Michael K. Ng. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XIV, 208 p. 18 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 83 
505 0 |a Queueing Systems and the Web -- Re-manufacturing Systems -- Hidden Markov Model for Customers Classification -- Markov Decision Process for Customer Lifetime Value -- Higher-order Markov Chains -- Multivariate Markov Chains -- Hidden Markov Chains. 
520 |a Markov chains are a particularly powerful and widely used tool for analyzing a variety of stochastic (probabilistic) systems over time. This monograph will present a series of Markov models, starting from the basic models and then building up to higher-order models. Included in the higher-order discussions are multivariate models, higher-order multivariate models, and higher-order hidden models. In each case, the focus is on the important kinds of applications that can be made with the class of models being considered in the current chapter. Special attention is given to numerical algorithms that can efficiently solve the models. Therefore, Markov Chains: Models, Algorithms and Applications outlines recent developments of Markov chain models for modeling queueing sequences, Internet, re-manufacturing systems, reverse logistics, inventory systems, bio-informatics, DNA sequences, genetic networks, data mining, and many other practical systems. 
650 0 |a Mathematics. 
650 0 |a Production management. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Mathematical statistics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Operations Management. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Math Applications in Computer Science. 
700 1 |a Ng, Michael K.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387293356 
830 0 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 83 
856 4 0 |u http://dx.doi.org/10.1007/0-387-29337-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)