Bioinformatics and Computational Biology Solutions Using R and Bioconductor

Bioconductor is a widely used open source and open development software project for the analysis and comprehension of data arising from high-throughput experimentation in genomics and molecular biology. Bioconductor is rooted in the open source statistical computing environment R. This volume's...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Gentleman, Robert (Επιμελητής έκδοσης), Carey, Vincent J. (Επιμελητής έκδοσης), Huber, Wolfgang (Επιμελητής έκδοσης), Irizarry, Rafael A. (Επιμελητής έκδοσης), Dudoit, Sandrine (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2005.
Σειρά:Statistics for Biology and Health,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preprocessing data from genomic experiments
  • Preprocessing Overview
  • Preprocessing High-density Oligonucleotide Arrays
  • Quality Assessment of Affymetrix GeneChip Data
  • Preprocessing Two-Color Spotted Arrays
  • Cell-Based Assays
  • SELDI-TOF Mass Spectrometry Protein Data
  • Meta-data: biological annotation and visualization
  • Meta-data Resources and Tools in Bioconductor
  • Querying On-line Resources
  • Interactive Outputs
  • Visualizing Data
  • Statistical analysis for genomic experiments
  • Analysis Overview
  • Distance Measures in DNA Microarray Data Analysis
  • Cluster Analysis of Genomic Data
  • Analysis of Differential Gene Expression Studies
  • Multiple Testing Procedures: the multtest Package and Applications to Genomics
  • Machine Learning Concepts and Tools for Statistical Genomics
  • Ensemble Methods of Computational Inference
  • Browser-based Affymetrix Analysis and Annotation
  • Graphs and networks
  • and Motivating Examples
  • Graphs
  • Bioconductor Software for Graphs
  • Case Studies Using Graphs on Biological Data
  • Case studies
  • limma: Linear Models for Microarray Data
  • Classification with Gene Expression Data
  • From CEL Files to Annotated Lists of Interesting Genes.