Riemannian Geometry

Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few works to c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Petersen, Peter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Έκδοση:Second Edition.
Σειρά:Graduate Texts in Mathematics, 171
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03211nam a22004455i 4500
001 978-0-387-29403-2
003 DE-He213
005 20151204144136.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387294032  |9 978-0-387-29403-2 
024 7 |a 10.1007/978-0-387-29403-2  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Petersen, Peter.  |e author. 
245 1 0 |a Riemannian Geometry  |h [electronic resource] /  |c by Peter Petersen. 
250 |a Second Edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XV, 405 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 171 
505 0 |a Riemannian Metrics -- Curvature -- Examples -- Hypersurfaces -- Geodesics and Distance -- Sectional Curvature Comparison I -- The Bochner Technique -- Symmetric Spaces and Holonomy -- Ricci Curvature Comparison -- Convergence -- Sectional Curvature Comparison II. 
520 |a Intended for a one year course, this volume serves as a single source, introducing students to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory, while also presenting the most up-to-date research. This book will appeal to readers with a knowledge of standard manifold theory, including such topics as tensors and Stokes theorem. Various exercises are scattered throughout the text, helping motivate readers to deepen their understanding of the subject. Important additions to this new edition include: * A completely new coordinate free formula that is easily remembered, and is, in fact, the Koszul formula in disguise; * An increased number of coordinate calculations of connection and curvature; * General fomulas for curvature on Lie Groups and submersions; * Variational calculus has been integrated into the text, which allows for an early treatment of the Sphere theorem using a forgottten proof by Berger; * Several recent results about manifolds with positive curvature. From reviews of the first edition: "The book can be highly recommended to all mathematicians who want to get a more profound idea about the most interesting achievements in Riemannian geometry. It is one of the few comprehensive sources of this type." - Bernd Wegner, Zentralblatt. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387292465 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 171 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-29403-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)