Methods and Procedures for the Verification and Validation of Artificial Neural Networks

Artificial neural networks are a form of artificial intelligence that have the capability of learning, growing, and adapting with dynamic environments. With the ability to learn and adapt, artificial neural networks introduce new potential solutions and approaches to some of the more challenging pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Taylor, Brian J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04484nam a22005535i 4500
001 978-0-387-29485-8
003 DE-He213
005 20151204142841.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387294858  |9 978-0-387-29485-8 
024 7 |a 10.1007/0-387-29485-6  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Taylor, Brian J.  |e author. 
245 1 0 |a Methods and Procedures for the Verification and Validation of Artificial Neural Networks  |h [electronic resource] /  |c by Brian J. Taylor. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XII, 278 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Background of the Verification and Validation of Neural Networks -- Augmentation of Current Verification and Validation Practices -- Risk and Hazard Analysis for Neural Network Systems -- Validation of Neural Networks Via Taxonomic Evaluation -- Stability Properties of Neural Networks -- Neural Network Verification -- Neural Network Visualization Techniques -- Rule Extraction as a Formal Method -- Automated Test Generation for Testing Neural Network Systems -- Run-Time Assessment of Neural Network Control Systems. 
520 |a Artificial neural networks are a form of artificial intelligence that have the capability of learning, growing, and adapting with dynamic environments. With the ability to learn and adapt, artificial neural networks introduce new potential solutions and approaches to some of the more challenging problems that the United States faces as it pursues the vision of space exploration and develops other system applications that must change and adapt after deployment. Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. Currently no standards exist to verify and validate neural network-based systems. NASA Independent Verification and Validation Facility has contracted the Institute for Scientific Research, Inc. to perform research on this topic and develop a comprehensive guide to performing V&V on adaptive systems, with emphasis on neural networks used in safety-critical or mission-critical applications. Methods and Procedures for the Verification and Validation of Artificial Neural Networks is the culmination of the first steps in that research. This volume introduces some of the more promising methods and techniques used for the verification and validation (V&V) of neural networks and adaptive systems. A comprehensive guide to performing V&V on neural network systems, aligned with the IEEE Standard for Software Verification and Validation, will follow this book. The NASA IV&V and the Institute for Scientific Research, Inc. are working to be at the forefront of software safety and assurance for neural network and adaptive systems. Methods and Procedures for the Verification and Validation of Artificial Neural Networks is structured for research scientists and V&V practitioners in industry to assure neural network software systems for future NASA missions and other applications. This book is also suitable for graduate-level students in computer science and computer engineering. 
650 0 |a Computer science. 
650 0 |a Computer organization. 
650 0 |a Computer communication systems. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Computer Systems Organization and Communication Networks. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387282886 
856 4 0 |u http://dx.doi.org/10.1007/0-387-29485-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)