Privacy Preserving Data Mining

Data mining has emerged as a significant technology for gaining knowledge from vast quantities of data. However, concerns are growing that use of this technology can violate individual privacy. These concerns have led to a backlash against the technology, for example, a "Data-Mining Moratorium...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Vaidya, Jaideep (Συγγραφέας), Zhu, Yu Michael (Συγγραφέας), Clifton, Christopher W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Σειρά:Advances in Information Security, 19
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03449nam a22005895i 4500
001 978-0-387-29489-6
003 DE-He213
005 20151030101612.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387294896  |9 978-0-387-29489-6 
024 7 |a 10.1007/978-0-387-29489-6  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Vaidya, Jaideep.  |e author. 
245 1 0 |a Privacy Preserving Data Mining  |h [electronic resource] /  |c by Jaideep Vaidya, Yu Michael Zhu, Christopher W. Clifton. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a X, 122 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Information Security,  |x 1568-2633 ;  |v 19 
505 0 |a Privacy and Data Mining -- What is Privacy? -- Solution Approaches / Problems -- Predictive Modeling for Classification -- Predictive Modeling for Regression -- Finding Patterns and Rules (Association Rules) -- Descriptive Modeling (Clustering, Outlier Detection) -- Future Research - Problems remaining. 
520 |a Data mining has emerged as a significant technology for gaining knowledge from vast quantities of data. However, concerns are growing that use of this technology can violate individual privacy. These concerns have led to a backlash against the technology, for example, a "Data-Mining Moratorium Act" introduced in the U.S. Senate that would have banned all data-mining programs (including research and development) by the U.S. Department of Defense. Privacy Preserving Data Mining provides a comprehensive overview of available approaches, techniques and open problems in privacy preserving data mining. This book demonstrates how these approaches can achieve data mining, while operating within legal and commercial restrictions that forbid release of data. Furthermore, this research crystallizes much of the underlying foundation, and inspires further research in the area. Privacy Preserving Data Mining is designed for a professional audience composed of practitioners and researchers in industry. This volume is also suitable for graduate-level students in computer science. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Data structures (Computer science). 
650 0 |a Data encryption (Computer science). 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Data Encryption. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Zhu, Yu Michael.  |e author. 
700 1 |a Clifton, Christopher W.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387258867 
830 0 |a Advances in Information Security,  |x 1568-2633 ;  |v 19 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-29489-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)