Non-Euclidean Geometries János Bolyai Memorial Volume /

"From nothing I have created a new different world,” wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Prékopa, András (Επιμελητής έκδοσης), Molnár, Emil (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Σειρά:Mathematics and Its Applications ; 581
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04485nam a22005535i 4500
001 978-0-387-29555-8
003 DE-He213
005 20151204171132.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387295558  |9 978-0-387-29555-8 
024 7 |a 10.1007/0-387-29555-0  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
245 1 0 |a Non-Euclidean Geometries  |h [electronic resource] :  |b János Bolyai Memorial Volume /  |c edited by András Prékopa, Emil Molnár. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XIII, 506 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics and Its Applications ;  |v 581 
505 0 |a History -- The Revolution of János Bolyai -- Gauss and Non-Euclidean Geometry -- János Bolyai’s New Face -- Axiomatical and Logical Aspects -- Hyperbolic Geometry, Dimension-Free -- An Absolute Property of Four Mutually Tangent Circles -- Remembering Donald Coxeter -- Axiomatizations of Hyperbolic and Absolute Geometries -- Logical Axiomatizations of Space-Time. Samples from the Literature -- Polyhedra, Volumes, Discrete Arrangements, Fractals -- Structures in Hyperbolic Space -- The Symmetry of Optimally Dense Packings -- Flexible Octahedra in the Hyperbolic Space -- Fractal Geometry on Hyperbolic Manifolds -- A Volume Formula for Generalised Hyperbolic Tetrahedra -- Tilings, Orbifolds and Manifolds, Visualization -- The Geometry of Hyperbolic Manifolds of Dimension at Least 4 -- Real-Time Animation in Hyperbolic, Spherical, and Product Geometries -- On Spontaneous Surgery on Knots and Links -- Classification of Tile-Transitive 3-Simplex Tilings and Their Realizations in Homogeneous Spaces -- Differential Geometry -- Non-Euclidean Analysis -- Holonomy, Geometry and Topology of Manifolds with Grassmann Structure -- Hypersurfaces of Type Number 2 in the Hyperbolic Four-Space and Their Extensions To Riemannian Geometry -- How Far Does Hyperbolic Geometry Generalize? -- Geometry of the Point Finsler Spaces -- Physics -- Black Hole Perturbations -- Placing the Hyperbolic Geometry of Bolyai and Lobachevsky Centrally in Special Relativity Theory: An Idea Whose Time has Returned. 
520 |a "From nothing I have created a new different world,” wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture. The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics. Audience This book is intended for those who teach, study, and do research in geometry and history of mathematics. Cultural historians, physicists, and computer scientists will also find it an important source of information. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Differential geometry. 
650 0 |a History. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Gravitation. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
700 1 |a Prékopa, András.  |e editor. 
700 1 |a Molnár, Emil.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387295541 
830 0 |a Mathematics and Its Applications ;  |v 581 
856 4 0 |u http://dx.doi.org/10.1007/0-387-29555-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)