Modelling and Reasoning with Vague Concepts

Vagueness is central to the flexibility and robustness of natural language descriptions. Vague concepts are robust to the imprecision of our perceptions, while still allowing us to convey useful, and sometimes vital, information. The study of vagueness in Artificial Intelligence (AI) is therefore mo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lawry, Jonathan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Σειρά:Studies in Computational Intelligence, 12
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03363nam a22005775i 4500
001 978-0-387-30262-1
003 DE-He213
005 20151204190440.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387302621  |9 978-0-387-30262-1 
024 7 |a 10.1007/0-387-30262-X  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Lawry, Jonathan.  |e author. 
245 1 0 |a Modelling and Reasoning with Vague Concepts  |h [electronic resource] /  |c by Jonathan Lawry. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XXV, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 12 
505 0 |a Vague Concepts and Fuzzy Sets -- Label Semantics -- Multi-Dimensional and Multi-Instance Label Semantics -- Information from Vague Concepts -- Learning Linguistic Models from Data -- Fusing Knowledge and Data -- Non-Additive Appropriateness Measures. 
520 |a Vagueness is central to the flexibility and robustness of natural language descriptions. Vague concepts are robust to the imprecision of our perceptions, while still allowing us to convey useful, and sometimes vital, information. The study of vagueness in Artificial Intelligence (AI) is therefore motivated by the desire to incorporate this robustness and flexibility into intelligent computer systems. Such a goal, however, requires a formal model of vague concepts that will allow us to quantify and manipulate the uncertainty resulting from their use as a means of passing information between autonomous agents. This volume outlines a formal representation framework for modelling and reasoning with vague concepts in Artificial Intelligence. The new calculus has many applications, especially in automated reasoning, learning, data analysis and information fusion. This book gives a rigorous introduction to label semantics theory, illustrated with many examples, and suggests clear operational interpretations of the proposed measures. It also provides a detailed description of how the theory can be applied in data analysis and information fusion based on a range of benchmark problems. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Mathematical statistics. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Information theory. 
650 0 |a Complexity, Computational. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Complexity. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Information and Communication, Circuits. 
650 2 4 |a Probability and Statistics in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387290560 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 12 
856 4 0 |u http://dx.doi.org/10.1007/0-387-30262-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)