All of Nonparametric Statistics

The goal of this text is to provide the reader with a single book where they can find a brief account of many, modern topics in nonparametric inference. The book is aimed at Master's level or Ph.D. level students in statistics, computer science, and engineering. It is also suitable for research...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wasserman, Larry (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Σειρά:Springer Texts in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03377nam a22004575i 4500
001 978-0-387-30623-0
003 DE-He213
005 20151204184001.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387306230  |9 978-0-387-30623-0 
024 7 |a 10.1007/0-387-30623-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Wasserman, Larry.  |e author. 
245 1 0 |a All of Nonparametric Statistics  |h [electronic resource] /  |c by Larry Wasserman. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XII, 270 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X 
505 0 |a Estimating the CDF and Statistical Functionals -- The Bootstrap and the Jackknife -- Smoothing: General Concepts -- Nonparametric Regression -- Density Estimation -- Normal Means and Minimax Theory -- Nonparametric Inference Using Orthogonal Functions -- Wavelets and Other Adaptive Methods -- Other Topics. 
520 |a The goal of this text is to provide the reader with a single book where they can find a brief account of many, modern topics in nonparametric inference. The book is aimed at Master's level or Ph.D. level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. This text covers a wide range of topics including: the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book has a mixture of methods and theory. Larry Wasserman is Professor of Statistics at Carnegie Mellon University and a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, multiple testing, and applications to astrophysics, bioinformatics and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathématiques de Montreal-Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. He is the author of All of Statistics: A Concise Course in Statistical Inference (Springer, 2003). 
650 0 |a Statistics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387251455 
830 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u http://dx.doi.org/10.1007/0-387-30623-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)