M-Solid Varieties of Algebras

M-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Koppitz, J. (Συγγραφέας), Denecke, K. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Σειρά:Advances in Mathematics ; 10
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03357nam a22005415i 4500
001 978-0-387-30806-7
003 DE-He213
005 20151030101728.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387308067  |9 978-0-387-30806-7 
024 7 |a 10.1007/0-387-30806-7  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Koppitz, J.  |e author. 
245 1 0 |a M-Solid Varieties of Algebras  |h [electronic resource] /  |c by J. Koppitz, K. Denecke. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XIV, 342 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mathematics ;  |v 10 
505 0 |a Basic Concepts -- Closure Operators and Lattices -- M-Hyperidentities and M-solid Varieties -- Hyperidentities and Clone Identities -- Solid Varieties of Arbitrary Type -- Monoids of Hypersubstitutions -- M-Solid Varieties of Semigroups -- M-solid Varieties of Semirings. 
520 |a M-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of mathematical discourse that is applicable in several concrete situations. It applies the general theory to two classes of algebraic structures, semigroups and semirings. Both these varieties and their subvarieties play an important role in computer science. A unique feature of this book is the use of Galois connections to integrate different topics. Galois connections form the abstract framework not only for classical and modern Galois theory, involving groups, fields and rings, but also for many other algebraic, topological, ordertheoretical, categorical and logical theories. This concept is used throughout the whole book, along with the related topics of closure operators, complete lattices, Galois closed subrelations and conjugate pairs of completely additive closure operators. Audience This book is intended for researchers in the fields of universal algebra, semigroups, and semirings; researchers in theoretical computer science; and students and lecturers in these fields. 
650 0 |a Mathematics. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Mathematical logic. 
650 0 |a Algebra. 
650 0 |a Group theory. 
650 0 |a Ordered algebraic structures. 
650 1 4 |a Mathematics. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
650 2 4 |a Programming Languages, Compilers, Interpreters. 
650 2 4 |a Mathematical Logic and Formal Languages. 
700 1 |a Denecke, K.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387308043 
830 0 |a Advances in Mathematics ;  |v 10 
856 4 0 |u http://dx.doi.org/10.1007/0-387-30806-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)