Algebra Fields and Galois Theory /

The present textbook is a lively, problem-oriented and carefully written introduction to classical modern algebra. The author leads the reader through interesting subject matter, while assuming only the background provided by a first course in linear algebra. The first volume focuses on field extens...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lorenz, Falko (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03552nam a22005175i 4500
001 978-0-387-31608-6
003 DE-He213
005 20151125021726.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387316086  |9 978-0-387-31608-6 
024 7 |a 10.1007/0-387-31608-6  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Lorenz, Falko.  |e author. 
245 1 0 |a Algebra  |h [electronic resource] :  |b Fields and Galois Theory /  |c by Falko Lorenz. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a VIII, 296 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Constructibility with Ruler and Compass -- Algebraic Extensions -- Simple Extensions -- Fundamentals of Divisibility -- Prime Factorization in Polynomial Rings. Gauss’s Theorem -- Polynomial Splitting Fields -- Separable Extensions -- Galois Extensions -- Finite Fields, Cyclic Groups and Roots of Unity -- Group Actions -- Applications of Galois Theory to Cyclotomic Fields -- Further Steps into Galois Theory -- Norm and Trace -- Binomial Equations -- Solvability of Equations -- Integral Ring Extensions with Applications to Galois Theory -- The Transcendence of ? -- Fundamentals of Transcendental Field Extensions -- Hilbert’s Nullstellensatz. 
520 |a The present textbook is a lively, problem-oriented and carefully written introduction to classical modern algebra. The author leads the reader through interesting subject matter, while assuming only the background provided by a first course in linear algebra. The first volume focuses on field extensions. Galois theory and its applications are treated more thoroughly than in most texts. It also covers basic applications to number theory, ring extensions and algebraic geometry. The main focus of the second volume is on additional structure of fields and related topics. Much material not usually covered in textbooks appears here, including real fields and quadratic forms, diophantine dimensions of a field, the calculus of Witt vectors, the Schur group of a field, and local class field theory. Both volumes contain numerous exercises and can be used as a textbook for advanced undergraduate students. From Reviews of the German version: This is a charming textbook, introducing the reader to the classical parts of algebra. The exposition is admirably clear and lucidly written with only minimal prerequisites from linear algebra. The new concepts are, at least in the first part of the book, defined in the framework of the development of carefully selected problems. - Stefan Porubsky, Mathematical Reviews. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Field theory (Physics). 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387289304 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/0-387-31608-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)