Algebra Fields and Galois Theory /
The present textbook is a lively, problem-oriented and carefully written introduction to classical modern algebra. The author leads the reader through interesting subject matter, while assuming only the background provided by a first course in linear algebra. The first volume focuses on field extens...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2006.
|
Σειρά: | Universitext
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Constructibility with Ruler and Compass
- Algebraic Extensions
- Simple Extensions
- Fundamentals of Divisibility
- Prime Factorization in Polynomial Rings. Gauss’s Theorem
- Polynomial Splitting Fields
- Separable Extensions
- Galois Extensions
- Finite Fields, Cyclic Groups and Roots of Unity
- Group Actions
- Applications of Galois Theory to Cyclotomic Fields
- Further Steps into Galois Theory
- Norm and Trace
- Binomial Equations
- Solvability of Equations
- Integral Ring Extensions with Applications to Galois Theory
- The Transcendence of ?
- Fundamentals of Transcendental Field Extensions
- Hilbert’s Nullstellensatz.