Critical Point Theory and Its Applications

Since the birth of the calculus of variations, researchers have discovered that variational methods, when they apply, can obtain better results than most other methods. Moreover, they apply in a very large number of situations. It was realized many years ago that the solutions of a great number of p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zou, Wenming (Συγγραφέας), Schechter, Martin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03360nam a22005415i 4500
001 978-0-387-32968-0
003 DE-He213
005 20151204180344.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387329680  |9 978-0-387-32968-0 
024 7 |a 10.1007/0-387-32968-4  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Zou, Wenming.  |e author. 
245 1 0 |a Critical Point Theory and Its Applications  |h [electronic resource] /  |c by Wenming Zou, Martin Schechter. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XII, 318 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminaries -- Functionals Bounded Below -- Even Functionals -- Linking and Homoclinic Type Solutions -- Double Linking Theorems -- Superlinear Problems -- Systems with Hamiltonian Potentials -- Linking and Elliptic Systems -- Sign-Changing Solutions -- Cohomology Groups. 
520 |a Since the birth of the calculus of variations, researchers have discovered that variational methods, when they apply, can obtain better results than most other methods. Moreover, they apply in a very large number of situations. It was realized many years ago that the solutions of a great number of problems are in effect critical points of functionals. Critical Point Theory and Its Applications presents some of the latest research in the area of critical point theory. Researchers have obtained many new results recently using this approach, and in most cases comparable results have not been obtained with other methods. This book describes the methods and presents the newest applications. The topics covered in the book include extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. The applications described include Hamiltonian systems, Schrödinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations. Many minimax theorems are established without the use of the (PS) compactness condition. Audience This book is intended for advanced graduate students and researchers in mathematics studying the calculus of variations, differential equations and topological methods. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential equations. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Functional Analysis. 
700 1 |a Schechter, Martin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387329659 
856 4 0 |u http://dx.doi.org/10.1007/0-387-32968-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)