Vacation Queueing Models Theory and Applications

A classical queueing model consists of three parts - arrival process, service process, and queue discipline. However, a vacation queueing model has an additional part - the vacation process which is governed by a vacation policy - that can be characterized by three aspects: 1) vacation start-up rule...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Tian, Naishuo (Συγγραφέας), Zhang, Zhe George (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2006.
Σειρά:International Series in Operations Research & Management Science, 93
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03718nam a22006015i 4500
001 978-0-387-33723-4
003 DE-He213
005 20151204172619.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387337234  |9 978-0-387-33723-4 
024 7 |a 10.1007/978-0-387-33723-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Tian, Naishuo.  |e author. 
245 1 0 |a Vacation Queueing Models Theory and Applications  |h [electronic resource] /  |c by Naishuo Tian, Zhe George Zhang. 
264 1 |a Boston, MA :  |b Springer US,  |c 2006. 
300 |a XII, 386 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 93 
505 0 |a M/G/1 Type Vacation Models: Exhaustive Service -- M/G/1 Type Vacation Models: Nonexhaustive Service -- General-Input Single Server Vacation Models -- Markovian Multiserver Vacation Models -- General-Input Multiserver Vacation Models -- Optimization in Vacation Models -- Applications of Vacation Models -- References. 
520 |a A classical queueing model consists of three parts - arrival process, service process, and queue discipline. However, a vacation queueing model has an additional part - the vacation process which is governed by a vacation policy - that can be characterized by three aspects: 1) vacation start-up rule; 2) vacation termination rule, and 3) vacation duration distribution. Hence, vacation queueing models are an extension of classical queueing theory. Vacation Queueing Models: Theory and Applications discusses systematically and in detail the many variations of vacation policy. By allowing servers to take vacations makes the queueing models more realistic and flexible in studying real-world waiting line systems. Integrated in the book's discussion are a variety of typical vacation model applications that include call centers with multi-task employees, customized manufacturing, telecommunication networks, maintenance activities, etc. Finally, contents are presented in a "theorem and proof" format and it is invaluable reading for operations researchers, applied mathematicians, statisticians; industrial, computer, electrical and electronics, and communication engineers; computer, management scientists; and graduate students in the above disciplines. 
650 0 |a Mathematics. 
650 0 |a Production management. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Computer organization. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Computer Systems Organization and Communication Networks. 
650 2 4 |a Operations Management. 
700 1 |a Zhang, Zhe George.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387337210 
830 0 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 93 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-33723-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)